Skip to main content

Beyond the Known: Novel Class Discovery for Open-World Graph Learning

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14855))

Included in the following conference series:

  • 1018 Accesses

Abstract

Node classification on graphs is of great importance in many applications. Due to the limited labeling capability and evolution in real-world open scenarios, novel classes can emerge on unlabeled testing nodes. However, little attention has been paid to novel class discovery on graphs. Discovering novel classes is challenging as novel and known class nodes are correlated by edges, which makes their representations indistinguishable when applying message passing GNNs. Furthermore, the novel classes lack labeling information to guide the learning process. In this paper, we propose a novel method Open-world gRAph neuraL network (ORAL) to tackle these challenges. ORAL first detects correlations between classes through semi-supervised prototypical learning. Inter-class correlations are subsequently eliminated by the prototypical attention network, leading to distinctive representations for different classes. Furthermore, to fully explore multi-scale graph features for alleviating label deficiencies, ORAL generates pseudo-labels by aligning and ensembling label estimations from multiple stacked prototypical attention networks. Extensive experiments on several benchmark datasets show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brbić, M., Zitnik, M., Wang, S., et al.: Mars: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17, 1200–1206 (2020)

    Article  Google Scholar 

  2. Bruna, J., Zaremba, W., Szlam, A., et al.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  3. Cao, K., Brbic, M., Leskovec, J.: Open-world semi-supervised learning. In: Proceedings of ICLR (2022)

    Google Scholar 

  4. Chen, D., Jacob, L., Mairal, J.: Convolutional kernel networks for graph-structured data. In: Proceedings of ICML (2020)

    Google Scholar 

  5. Ding, K., Wang, J., Li, J., et al.: Graph prototypical networks for few-shot learning on attributed networks. In: Proceedings CIKM (2020)

    Google Scholar 

  6. Gao, X., Hu, W., Guo, Z.: Exploring structure-adaptive graph learning for robust semi-supervised classification. In: Proceedings of ICME (2020)

    Google Scholar 

  7. Geng, C., Huang, S.J., Chen, S.: Recent advances in open set recognition: a survey. In: TPAMI (2020)

    Google Scholar 

  8. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of IJCNN. IEEE (2005)

    Google Scholar 

  9. Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: Proceedings of ICCV (2019)

    Google Scholar 

  10. Hetzel, L., Fischer, D.S., Günnemann, S., et al.: Graph representation learning for single-cell biology. Current Opinion in Systems Biology (2021)

    Google Scholar 

  11. Huang, W., Zhang, T., Rong, Y., et al.: Adaptive sampling towards fast graph representation learning. In: Proceedings of NeurlIPS (2018)

    Google Scholar 

  12. Izadi, M.R., Fang, Y., Stevenson, R.L., et al.: Optimization of graph neural networks with natural gradient descent. In: Proceedings of IEEE Big Data (2020)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: Proceedings of NeurIPS (2016)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICLR (2017)

    Google Scholar 

  15. Kuhn, H.W.: The hungarian method for the assignment problem. In: NRL (1955)

    Google Scholar 

  16. Liao, R., Brockschmidt, M., Tarlow, D., et al.: Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272 (2018)

  17. Liu, J., Wang, Y., Zhang, T., et al.: Open-world semi-supervised novel class discovery. In: Proceedings of IJCAI (2023)

    Google Scholar 

  18. Liu, Y., Li, Z., Pan, S., et al.: Anomaly detection on attributed networks via contrastive self-supervised learning. In: IEEE TNNLS (2021)

    Google Scholar 

  19. Lu, B., Gan, X., Yang, L., et al.: Geometer: Graph few-shot class-incremental learning via prototype representation. In: Proceedings of SIGKDD (2022)

    Google Scholar 

  20. Luan, S., Hua, C., Lu, Q., et al.: Is heterophily a real nightmare for graph neural networks on performing node classification? arXiv preprint arXiv:2109.05641 (2021)

  21. Muzio, G., O’Bray, L., Borgwardt, K.: Biological network analysis with deep learning. In: Briefings in bioinformatics (2021)

    Google Scholar 

  22. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: Proceedings of ICML (2016)

    Google Scholar 

  23. Scarselli, F., Gori, M., Tsoi, A.C., et al.: The graph neural network model. In: IEEE Trans. Neural Netw. (2008)

    Google Scholar 

  24. Shchur, O., Mumme, M., Bojchevski, A., et al.: Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018)

  25. Sun, X., Yang, Z., Zhang, C., et al.: Conditional gaussian distribution learning for open set recognition. In: Proceedings of CVPR (2020)

    Google Scholar 

  26. Vaze, S., Han, K., Vedaldi, A., et al.: Generalized category discovery. In: Proceedings of CVPR (2022)

    Google Scholar 

  27. Velickovic, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. In: Proceedings of ICLR (2018)

    Google Scholar 

  28. Wen, X., Zhao, B., Qi, X.: Parametric classification for generalized category discovery: a baseline study. In: Proceedings of ICCV (2023)

    Google Scholar 

  29. Wu, M., Pan, S., Zhou, C., et al.: Unsupervised domain adaptive graph convolutional networks. In: Proceedings of WWW (2020)

    Google Scholar 

  30. Wu, M., Pan, S., Zhu, X.: Openwgl: open-world graph learning. In: Proceedings of ICDM (2020)

    Google Scholar 

  31. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: Proceedings of ICML (2016)

    Google Scholar 

  32. Zhao, B., Wen, X., Han, K.: Learning semi-supervised gaussian mixture models for generalized category discovery. In: Proceedings of ICCV (2023)

    Google Scholar 

  33. Zhong, Z., Zhu, L., Luo, Z., et al.: Openmix: Reviving known knowledge for discovering novel visual categories in an open world. In: Proceedings of CVPR (2021)

    Google Scholar 

  34. Zhu, Y., Xu, Y., Yu, F., et al.: Graph contrastive learning with adaptive augmentation. In: Proceedings of WWW (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by Ant Group, NSF under grant III-2106758, National Natural Science Foundation of China (62276187), and the Shanghai Science, Technology Development Fund No. 22dz1200704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, Y. et al. (2024). Beyond the Known: Novel Class Discovery for Open-World Graph Learning. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14855. Springer, Singapore. https://doi.org/10.1007/978-981-97-5572-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5572-1_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5571-4

  • Online ISBN: 978-981-97-5572-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics