Skip to main content

Multi-level Segmentation of Chilli Images Driven by Walrus Optimization Algorithm with Two Strategies

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14862))

Included in the following conference series:

  • 806 Accesses

Abstract

High-precision image segmentation is beneficial for meeting the requirements of precision agricultural management. In this regard, an enhanced walrus optimization algorithm (LE-WaOA) is proposed, combined with minimum cross-entropy method for multi-level segmentation of chilli images. LE-WaOA integrates lifespan-based Lévy flight and elite group genetic strategy, enhancing optimization convergence and accuracy. The smaller the cross-entropy, the more refined the segmentation of the chili pepper images. By minimizing the cross-entropy between the segmented and original images, LE-WaOA aims to find the optimal set of threshold combinations for the highest segmentation accuracy. The smaller the cross-entropy, the more detailed segmentation the chilli images present. Comparative experiments on CEC2017 and real chilli images demonstrate the superiority of LE-WaOA over DE, CMAES, and other metaheuristic algorithms. LE-WaOA achieves the lowest cross-entropy and performs excellently in the peak signal-to-noise ratio evaluation metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thakur, H., Jindal, S.K., Sharma, A., Dhaliwal, M.S.: A monogenic dominant resistance for leaf curl virus disease in chilli pepper (Capsicum annuum L.). Crop Prot. 116, 115–120 (2019)

    Google Scholar 

  2. Hamuda, E., Glavin, M., Jones, E.: A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 184–199 (2016)

    Article  Google Scholar 

  3. Matić, T., Aleksi, I., Hocenski, Ž, Kraus, D.: Real-time biscuit tile image segmentation method based on edge detection. ISA Trans. 76, 246–254 (2018)

    Article  Google Scholar 

  4. Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y.: Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493, 626–646 (2022)

    Article  Google Scholar 

  5. Zhang, X., Sun, Y., Liu, H., Hou, Z., Zhao, F., Zhang, C.: Improved clustering algorithms for image segmentation based on non-local information and back projection. Inf. Sci. 550, 129–144 (2021)

    Article  MathSciNet  Google Scholar 

  6. Goh, T.Y., Basah, S.N., Yazid, H., Safar, M.J.A., Saad, F.S.A.: Performance analysis of image thresholding: Otsu technique. Measurement 114, 298–307 (2018)

    Article  Google Scholar 

  7. Wang, S., Fan, J.: Simplified expression and recursive algorithm of multi-threshold Tsallis entropy. Expert Syst. Appl. 237, 121690 (2024)

    Article  Google Scholar 

  8. Mesejo, P., Ibáñez, O., Cordón, O., Cagnoni, S.: A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl. Soft Comput. 44, 1–29 (2016)

    Article  Google Scholar 

  9. Yu, X., Wu, X.: Ensemble grey wolf optimizer and its application for image segmentation. Expert Syst. Appl. 209, 118267 (2022)

    Article  Google Scholar 

  10. Ma, B.J., Pereira, J.L.J., Oliva, D., Liu, S., Kuo, Y.H.: Manta ray foraging optimizer-based image segmentation with a two-strategy enhancement. Knowl.-Based Syst. 262, 110247 (2023)

    Article  Google Scholar 

  11. Zhao, S., Wang, P., Heidari, A.A., Zhao, X., Chen, H.: Boosted crow search algorithm for handling multi-threshold image problems with application to X-ray images of COVID-19. Expert Syst. Appl. 213, 119095 (2023)

    Article  Google Scholar 

  12. Trojovský, P., Dehghani, M.: A new bio-inspired metaheuristic algorithm for solving optimization problems based on walruses behavior. Sci. Rep. 13(1), 8775 (2023)

    Article  Google Scholar 

  13. Sultan, H.M., Mossa, M.A., Abdelaziz, A.Y.: Parameter identification of solar cell mathematical models using metaheuristic algorithms. In: Advances in Solar Photovoltaic Energy Systems. IntechOpen (2024)

    Google Scholar 

  14. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  15. Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., Gálvez, J.: Cross entropy based thresholding for magnetic resonance brain images using crow search algorithm. Expert Syst. Appl. 79, 164–180 (2017)

    Article  Google Scholar 

  16. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution–an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  17. Zhong, C., Li, G., Meng, Z.: Beluga whale optimization: a novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 251, 109215 (2022)

    Article  Google Scholar 

  18. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  19. Abdel-Basset, M., Mohamed, R., Azeem, S.A.A., Jameel, M., Abouhawwash, M.: Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl.-Based Syst. 268, 110454 (2023)

    Article  Google Scholar 

  20. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Bound Constrained Real-Parameter Numerical Optimization. Nanyang Technological University, Singapore (2016)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 71863018) and Jiangxi Provincial Social Science Planning Project (No. 21GL12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, C., Shao, P., Zhang, S. (2024). Multi-level Segmentation of Chilli Images Driven by Walrus Optimization Algorithm with Two Strategies. In: Huang, DS., Zhang, X., Chen, W. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14862. Springer, Singapore. https://doi.org/10.1007/978-981-97-5578-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5578-3_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5577-6

  • Online ISBN: 978-981-97-5578-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics