Skip to main content

SSDC-Net: An Effective Classification Method of Steel Surface Defects Based on Salient Local Features

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14864))

Included in the following conference series:

  • 460 Accesses

Abstract

To effectively classify steel surface defects, it is crucial to improve the feature representation. The features extracted by the current steel surface defect classification model inadequately represent different defect categories, particularly when samples from different categories exhibit high similarity, resulting in degraded model performance. In this paper, we propose the Steel Surface Defect Classification Network (SSDC-Net) to optimize the steel surface defect classification task. This network includes the Channel Information Complementary Matrix (CICM) module and the Multi-Scale Contrastive Loss (MCL) method, which models the channel information between similar samples to capture and distinguish subtle visual differences induced by distinct channel information. Specifically, the CICM module utilizes interactive information between channels of the feature map to enhance local feature representation. To enhance global feature representation, we further introduce a multi-scale contrastive loss, which not only maximizes differences between features but also reduces the gap between different views of the same sample. Extensive experiments conducted on the BG-DET dataset, FSC-20 dataset, and FSD dataset demonstrate the effectiveness of each proposed module. Compared with other methods, our approach has achieved state-of-the-art performance. Additionally, our method is plug-and-play and can be seamlessly integrated into other backbone networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ultralytics/ultralytics?tab=readme-ov-file.

References

  1. Barros, B., Conde, B., Cabaleiro, M., Riveiro, B.: Design and testing of a decision tree algorithm for early failure detection in steel truss bridges. Eng. Struct. 289, 116243 (2023)

    Article  Google Scholar 

  2. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems, vol. 33, pp. 9912–9924 (2020)

    Google Scholar 

  3. Chen, J., et al.: Run, don’t walk: chasing higher flops for faster neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12021–12031 (2023)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  6. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Sig. Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  7. Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3560–3569 (2021)

    Google Scholar 

  8. Di, H., Ke, X., Peng, Z., Dongdong, Z.: Surface defect classification of steels with a new semi-supervised learning method. Opt. Lasers Eng. 117, 40–48 (2019)

    Article  Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Essid, O., Laga, H., Samir, C.: Automatic detection and classification of manufacturing defects in metal boxes using deep neural networks. PLoS ONE 13(11), e0203192 (2018)

    Article  Google Scholar 

  11. Fang, X., Luo, Q., Zhou, B., Li, C., Tian, L.: Research progress of automated visual surface defect detection for industrial metal planar materials. Sensors 20(18), 5136 (2020)

    Article  Google Scholar 

  12. Fu, G., et al.: A multi-scale pooling convolutional neural network for accurate steel surface defects classification. Front. Neurorobot. 17, 1096083 (2023)

    Article  Google Scholar 

  13. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  14. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an in variant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. He, Y., Song, K., Meng, Q., Yan, Y.: An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Trans. Instrum. Meas. 69(4), 1493–1504 (2019)

    Article  Google Scholar 

  18. Jin, G., Liu, Y., Qin, P., Hong, R., Xu, T., Lu, G.: An end-to-end steel surface classification approach based on EDCGAN and MobileNet V2. Sensors 23(4), 1953 (2023)

    Article  Google Scholar 

  19. Khan, U., Khan, M., Elsaddik, A., Gueaieb, W.: DDNet: diabetic retinopathy detection system using skip connection-based upgraded feature block. In: 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2023)

    Google Scholar 

  20. Kim, S., Park, E.: SMPConv: self-moving point representations for continuous convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10289–10299 (2023)

    Google Scholar 

  21. Krichen, M.: Convolutional neural networks: a survey. Computers 12(8), 151 (2023)

    Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  23. Zhao, W., Song, K., Wang, Y., Liang, S., Yan, Y.: FaNet: feature-aware network for few shot classification of strip steel surface defects. Measurement 208, 112446 (2023)

    Article  Google Scholar 

  24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  25. Li, N., Wang, F., Song, G.: New entropy-based vibro-acoustic modulation method for metal fatigue crack detection: an exploratory study. Measurement 150, 107075 (2020)

    Article  Google Scholar 

  26. Li, Q., Chen, J., Zhao, L.: Research on an improved metal surface defect detection sensor based on a 3D RFID tag antenna. J. Sens. 2020, 1–13 (2020)

    Google Scholar 

  27. Li, S., Wu, C., Xiong, N.: Hybrid architecture based on CNN and transformer for strip steel surface defect classification. Electronics 11(8), 1200 (2022)

    Article  Google Scholar 

  28. Li, Z., Wu, C., Han, Q., Hou, M., Chen, G., Weng, T.: CASI-Net: a novel and effect steel surface defect classification method based on coordinate attention and self-interaction mechanism. Mathematics 10(6), 963 (2022)

    Article  Google Scholar 

  29. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  30. Luo, Q., et al.: Surface defect classification for hot-rolled steel strips by selectively dominant local binary patterns. IEEE Access 7, 23488–23499 (2019)

    Article  Google Scholar 

  31. Luo, Q., Sun, Y., Li, P., Simpson, O., Tian, L., He, Y.: Generalized completed local binary patterns for time-efficient steel surface defect classification. IEEE Trans. Instrum. Meas. 68(3), 667–679 (2018)

    Article  Google Scholar 

  32. Nguyen, T.C., Tien, D.H., Nguyen, B.N., Hsu, Q.C.: Multi-response optimization of milling process of hardened S50C steel using SVM-GA based method. Metals 13(5), 925 (2023)

    Article  Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  34. Tang, B., Chen, L., Sun, W., Lin, Z.K.: Review of surface defect detection of steel products based on machine vision. IET Image Process. 17(2), 303–322 (2023)

    Google Scholar 

  35. Vielzeuf, V., Lechervy, A., Pateux, S., Jurie, F.: CentralNet: a multilayer approach for multimodal fusion. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision – ECCV 2018 Workshops. LNCS, vol. 11134, pp. 575–589. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_44

    Chapter  Google Scholar 

  36. Wang, F., Liu, H.: Understanding the behaviour of contrastive loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2021)

    Google Scholar 

  37. Wang, L., et al.: A creep life prediction model of P91 steel coupled with back-propagation artificial neural network (BP-ANN) and θ projection method. Int. J. Press. Vessels Piping 206, 105039 (2023)

    Article  Google Scholar 

  38. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via nonparametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  39. Xiao, W., Song, K., Liu, J., Yan, Y.: Graph embedding and optimal transport for few-shot classification of metal surface defect. IEEE Trans. Instrum. Meas. 71, 1–10 (2022)

    Google Scholar 

  40. Zadeh, A., Chen, M., Poria, S., Cambria, E., Morency, L.P.: Tensor fusion network for multimodal sentiment analysis. arXiv preprint arXiv:1707.07250 (2017)

  41. Zhang, J., et al.: Rethinking mobile block for efficient attention-based models. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1389–1400. IEEE Computer Society (2023)

    Google Scholar 

  42. Zhang, R., et al.: Tip adapter: training-free adaption of clip for few-shot classification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. LNCS, vol. 13695, pp. 493–510. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_29

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, Q. et al. (2024). SSDC-Net: An Effective Classification Method of Steel Surface Defects Based on Salient Local Features. In: Huang, DS., Si, Z., Pan, Y. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14864. Springer, Singapore. https://doi.org/10.1007/978-981-97-5588-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5588-2_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5587-5

  • Online ISBN: 978-981-97-5588-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics