Skip to main content

Hierarchical Cascaded Multi-Axis Window Self-Attention and Layer Feature Fusion for Brain Glioma Segmentation

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14867))

Included in the following conference series:

  • 598 Accesses

Abstract

Automatic segmentation of brain glioma from magnetic resonance imaging (MRI) using deep learning methods is very important for clinical diagnosis and follow-up treatments. The size, shape and location of glioma vary greatly among different patients, and the spatial information and location details of its corresponding feature map are very easy to lose, resulting in the segmentation accuracy of related models still to be improved. This paper proposes an advanced brain glioma segmentation network LHA-UNet based on hierarchical cascaded multi-axis window self-attention and multi-layer feature fusion. By comparing with some models such as U-Net, HyResUNet, DenseUNet, UNet++, LHA-UNet model has achieved the best results in all aspects, which proves the effectiveness of components of hierarchical cascaded multi-axis window self-attention and layer feature fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mamelak, A.N., Jacoby, D.B.: Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin. Drug Deliv. 4(2), 175–186 (2007)

    Article  Google Scholar 

  2. Saut, O., Lagaert, J.B., Colin, T., et al.: A multilayer grow-or-go model for GBM: effects of invasive cells and anti-angiogenesis on growth. Bull. Math. Biol. 76(9), 2306–2333 (2014)

    Article  MathSciNet  Google Scholar 

  3. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Medi. Imag. 34(10), 1993–2024 (2014)

    Google Scholar 

  4. Cui, S., Mao, L., Jiang, J., et al.: Automatic semantic segmentation of brain gliomas from MRI images using a deep cascaded neural network. J. Healthc. Eng. 2018 (2018)

    Google Scholar 

  5. Lin, F., Wu, Q., Liu, J., et al.: Path aggregation U-Net model for brain tumor segmentation. Multimedia Tools and Applications 80(15), 22951–22964 (2021)

    Article  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18, pp. 234–241. Springer International Publishing (2015)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.:Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020). https://arxiv.org/abs/2010.11929

  9. Wu, S., Wu, T., Tan, H., et al.: Pale transformer: a general vision transformer backbone with pale-shaped attention. In: Proceedings of the AAAI Conference on Artificial Intelligence 36(3), 2731–2739 (2022)

    Google Scholar 

  10. Liu, Y., Wu, Y.H., Sun, G., et al.: Vision transformers with hierarchical attention. arXiv preprint arXiv:2106.03180 (2021). https://arxiv.org/abs/2106.03180

  11. Bakas, S., Reyes, M., Jakab, A., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv:1811.02629 (2018). https://arxiv.org/abs/1811.02629

  12. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13713–13722 (2021)

    Google Scholar 

  13. Park, J., Woo, S., Lee, J.Y., et al.: A simple and light-weight attention module for convolutional neural networks. Int. J. Comput. Vision 128(4), 783–798 (2020)

    Article  Google Scholar 

  14. Wang, Q., Wu, B., Zhu, P., et al.: ECA-Net: Efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11534–11542 (2020)

    Google Scholar 

  15. Woo, S., Park, J., Lee, J.Y., et al.: Cbam: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  16. Zhang, H., Zu, K., Lu, J., et al.: EPSANet: an efficient pyramid squeeze attention block on convolutional neural network. In: Proceedings of the Asian Conference on Computer Vision, pp. 1161–1177 (2022)

    Google Scholar 

  17. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  18. Kaku, A., Hegde, C.V., Huang, J., et al.: DARTS: DenseUnet-based automatic rapid tool for brain segmentation. arXiv preprint arXiv:1911.05567 (2019). https://arxiv.org/abs/1911.05567

  19. Nassar, S.E., Mohamed, M.A.E.A., Elnakib, A.: MRI brain tumor segmentation using deep learning. MEJ. Mansoura Eng. J. 45(4), 45–54 (2021)

    Article  Google Scholar 

  20. Xu, D., Zhou, X., Niu, X., et al.: Automatic segmentation of low-grade glioma in MRI image based on UNet++ model. J. Phys. Conf. Series. IOP Publishing 1693(1), 012135 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Inner Mongolia Autonomous Region Science and Technology Program Project (Contract No. 2022YFSH0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaozhi Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, Y., Yang, H., Yu, L., Xu, Q. (2024). Hierarchical Cascaded Multi-Axis Window Self-Attention and Layer Feature Fusion for Brain Glioma Segmentation. In: Huang, DS., Si, Z., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14867. Springer, Singapore. https://doi.org/10.1007/978-981-97-5597-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5597-4_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5596-7

  • Online ISBN: 978-981-97-5597-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics