Abstract
The channel attention mechanism and spatial attention mechanism are crucial in enhancing the performance of convolutional neural networks. However, most existing methods focus on developing more intricate attention modules to improve performance, which inevitably increases the number of model parameters. To address the trade-off between performance and parameter count, this paper introduces an efficient Parameter-free Attention Aggregation Model (PAAM) plug-and-play module. The module first creates a Local Feature Enhancement Module (LFEM) using adaptive pooling. Firstly, the local feature enhancement module (LFEM) is constructed through adaptive pooling to enhance the expression of local features; secondly, the local-global feature interaction module (L-GFIM) is used to realize the mutual compensation between local and global features, which effectively extends the coverage of local-global interaction. The experimental results indicate that PAAM outperforms the SOTA model in ImageNet-1K, Cifar-10, and Cifar-100 image classification datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis, University of Waterloo (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Yin, Y., et al.: Artificial neural networks for finger vein recognition: a survey. arXiv preprint arXiv:2208.13341 (2022)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Xie, S., Girshick, R., Doll´ar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)
Yang, Z., Zhu, L., Wu, Y., Yang, Y.: Gated channel transformation for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2020)
Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519 (2019)
Wu, T., Tang, S., Zhang, R., Cao, J., Zhang, Y.: CGNet: a light-weight context guided network for semantic segmentation. IEEE Trans. Image Process. 30, 1169–1179 (2020)
Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)
Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: Bottleneck attention module. arXiv preprint arXiv:1807.06514 (2018)
Zhao, H., et al.: PSANet: Pointwise spatial attention network for scene parsing. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 267–283 (2018)
Xu, K., Wang, Z., Shi, J., Li, H., Zhang, Q.C.: A2-net: Molecular structure estimation from cryo-EM density volumes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1230–1237 (2019)
Acknowledgments
This work was supported by Natural Science Foundation Program of Inner Mongolia (No. 2023MS06009).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Qi, XH. et al. (2024). PAAM (Parameter-free Attentional Aggregation Model). In: Huang, DS., Zhang, C., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14868. Springer, Singapore. https://doi.org/10.1007/978-981-97-5600-1_12
Download citation
DOI: https://doi.org/10.1007/978-981-97-5600-1_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5599-8
Online ISBN: 978-981-97-5600-1
eBook Packages: Computer ScienceComputer Science (R0)