Skip to main content

Contrastive Learning for Silent Face Liveness Detection Based on A Hybrid Framework

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14868))

Included in the following conference series:

  • 429 Accesses

Abstract

Face liveness detection is essential to ensuring the security of face recognition systems. Most current models rely on convolutional neural networks to achieve domain generalization through complete representations on common modules. The limitations of receptive field prevent model getting global context and capturing long-range dependencies, which ignores the global face semantic information and lacks the local focus of the face on more fine-grained features. To tackle these challenges, this paper proposes a silent face liveness detection domain generalization model based on the fusion of convolutional neural network (CNN) and Swin Transformer features, namely, CLCSN. Then, a contrastive learning technique is suggested to highlight liveness-related style aspects, which improves the generalization capacity, in order to generate a generalized representation. Experimental results demonstrate our approach’s effectiveness in solving the face liveness detection domain generalization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)

    Google Scholar 

  2. Liu, Y., Jourabloo, A., Liu, X.: Learning deep models for face anti-spoofing: Binary or auxiliary supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 389–398. IEEE (2018)

    Google Scholar 

  3. Yang, J., Lei, Z., Li, S. Z.: Learn convolutional neural network for face anti-spoofing. arxiv preprint arxiv: 1408.5601 (2014)

    Google Scholar 

  4. Li, H., Li, W., Cao, H., Wang, S., Huang, F., Kot, A.C.: Unsupervised domain adaptation for face anti-spoofing. IEEE Trans. Inform. Forens. Secur. 13(7), 1794–1809 (2018)

    Article  Google Scholar 

  5. Wang, Z., Wang, Z., Yu, Z., Deng, W., Li, J., Gao, T., Wang, Z.: Domain generalization via shuffled style assembly for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4123–4133. IEEE (2022)

    Google Scholar 

  6. Shao, R., Lan, X., Li, J., Yuen, P.C.: Multi-adversarial discriminative deep domain generalization for face presentation attack detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10023–10031. IEEE (2019)

    Google Scholar 

  7. Jia, Y., Zhang, J., Shan, S., Chen, X.: Single-side domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8484–8493. IEEE (2020)

    Google Scholar 

  8. Muzammal, N.M.: Intriguing properties of vision transformers. Adv. Neural Info. Process. Syst. 34 (2021)

    Google Scholar 

  9. Liao, C. H., Chen, W. C., Liu, H. T., Yeh, Y. R., Hu, M. C., Chen, C. S.: Domain invariant vision transformer learning for face anti-spoofing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6098–6107. IEEE (2023)

    Google Scholar 

  10. Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8. IEEE (2013)

    Google Scholar 

  11. Yu, Z., Zhao, C., Wang, Z., Qin, Y., Su, Z., Li, X., Zhou, F., Zhao, G.: Searching central difference convolutional networks for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5295–5305. IEEE (2020)

    Google Scholar 

  12. Wang, Y.C., Wang, C.Y., Lai, S.H.: Disentangled representation with dual-stage feature learning for face anti-spoofing. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1955–1964. IEEE (2022)

    Google Scholar 

  13. Liu, S., Lu, S., Xu, H., Yang, J., Ding, S., Ma, L.: Feature generation and hypothesis verification for reliable face anti-spoofing. Proc. AAAI Conf. Intell. 36(2), 1782–1791 (2022)

    Google Scholar 

  14. Zhou, Q., Zhang, K.Y., Yao, T., Lu, X., Yi, R., Ding, S., Ma, L.: Instance-aware domain generalization for face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20453–20463. IEEE (2023)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16 Ã— 16 words: Transformers for image recognition at scale. arxiv preprint arxiv: 2010.11929 (2020)

    Google Scholar 

  16. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022. IEEE (2021)

    Google Scholar 

  17. Mehta, S., Rastegari, M.: Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arxiv 2021. arxiv preprint arxiv: 2110.02178. IEEE (2021)

    Google Scholar 

  18. Huang, Y.H., Hsieh, J.W., Chang, M.C., Ke, L., Lyu, S., Santra, A.S.: Multi-teacher single-student visual transformer with multi-level attention for face spoofing detection. In: BMVC, p. 125. IEEE (2021)

    Google Scholar 

  19. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520. IEEE (2018)

    Google Scholar 

  20. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823. IEEE (2015)

    Google Scholar 

  21. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758. IEEE (2021)

    Google Scholar 

  22. Lin, T. Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  23. Xiang, J., Zhu, G.: Joint face detection and facial expression recognition with MTCNN. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 424–427. IEEE (2017)

    Google Scholar 

  24. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inform. Forensic. Secur. 10(4), 746–761 (2015)

    Article  Google Scholar 

  25. Liu, S., et al.: Adaptive normalized representation learning for generalizable face anti-spoofing. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1469–1477. IEEE (2021)

    Google Scholar 

  26. Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 26–31. IEEE (2012)

    Google Scholar 

  27. Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: 2012 BIOSIG-Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), pp. 1–7. IEEE (2012)

    Google Scholar 

  28. Boulkenafet, Z., Komulainen, J., Li, L., Feng, X., Hadid, A.: Oulu-npu: A mobile face presentation attack database with real-world variations. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 612–618. IEEE (2017)

    Google Scholar 

Download references

Acknowledgments

his work was supported by research fundings from National Science Foundation of China (No.82303675, No.61272315 and No.12305404), the National Key R&D Program of China (No.2023YFF0613504), Zhejiang Provincial Major Science and Technology Project (No.2023C01040), Natural Science Foundation of Zhejiang Province (No. LY21F020028, No. LY22F010010 and No. LQ22F020021), Fundamental Research Funds for the Provincial Universities of Zhejiang (No. 2022YW52) and National Platform for basic conditions of science and technology (No.APT2301–7).

Disclosure of Interests. Disclosure of interests. the authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Y. et al. (2024). Contrastive Learning for Silent Face Liveness Detection Based on A Hybrid Framework. In: Huang, DS., Zhang, C., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14868. Springer, Singapore. https://doi.org/10.1007/978-981-97-5600-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5600-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5599-8

  • Online ISBN: 978-981-97-5600-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics