Skip to main content

BS2CL: Balanced Self-supervised Contrastive Learning for Thyroid Cytology Whole Slide Image Multi-classification

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14868))

Included in the following conference series:

  • 483 Accesses

Abstract

Thyroid cytology whole slide images (WSIs) hold vital information essential for precise diagnosis. Given the huge size of WSIs, multiple instance learning (MIL) is an effective solution for the WSI classification task when only slide-level labels are accessible. The embedding-based MIL uses a feature extractor pretrained with the self-supervised contrastive learning framework to eliminate the dependence on patch-level labels. However, the distribution of class in thyroid patches is unbalanced, and most existing self-supervised contrastive learning methods take little account of the data imbalance, which makes the features not discriminative enough. To address this problem, we propose a novel balanced self-supervised contrastive learning (BS2CL) framework for pretraining. It first clusters the patches to preserve the class structure of the patches and then assigns the clustering centers to a set of pre-computed uniformly distributed optimal locations. This constraint creates a more uniform distribution of different classes in the feature space which leads to clearer class boundaries between different classes, an unbiased feature space, and more discriminative features. Furthermore, a bag-level data augmentation strategy is introduced to increase bag quantities and improve classification performance. Extensive experiments show that the proposed method outperforms other latest methods on the thyroid cytology WSI dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabanillas, M.E., McFadden, D.G., Durante, C.: Thyroid cancer. The Lancet 388(10061), 2783–2795 (2016)

    Article  Google Scholar 

  2. Haugen, B.R., Alexander, E.K., Bible, K.C., et al.: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016)

    Article  Google Scholar 

  3. Cibas, E.S., Ali, S.Z.: The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 27(11), 1341–1346 (2017)

    Article  Google Scholar 

  4. Cochand-Priollet, B., Koutroumbas, K., Megalopoulou, T.M., et al.: Discriminating benign from malignant thyroid lesions using artificial intelligence and statistical selection of morphometric features. Oncol. Rep. 15(4), 1023–1026 (2006)

    Google Scholar 

  5. Gopinath, B., Shanthi, N.: Development of an automated medical diagnosis system for classifying thyroid tumor cells using multiple classifier fusion. Technol. Cancer Res. Treat. 14(5), 653–662 (2015)

    Article  Google Scholar 

  6. Chain, K., Legesse, T., Heath, J.E., et al.: Digital image-assisted quantitative nuclear analysis improves diagnostic accuracy of thyroid fine-needle aspiration cytology. Cancer Cytopathol. 127(8), 501–513 (2019)

    Article  Google Scholar 

  7. Guan, Q., Wang, Y., Ping, B., et al.: Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J. Cancer 10(20), 4876 (2019)

    Article  Google Scholar 

  8. Hirokawa, M., Niioka, H., Suzuki, A., et al.: Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology. Cancer Cytopathol. 131(4), 217–225 (2023)

    Article  Google Scholar 

  9. Dov, D., Kovalsky, S.Z., Assaad, S., et al.: Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images. Med. Image Anal. 67, 101814 (2021)

    Article  Google Scholar 

  10. Qiu, S., Guo, Y., Zhu, C., et al.: Attention based multi-instance thyroid cytopathological diagnosis with multi-scale feature fusion. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3536–3541 (2021)

    Google Scholar 

  11. Yu, B., Yin, P., Chen, H., et al.: Pyramid multi-loss vision transformer for thyroid cancer classification using cytological smear. Knowl.-Based Syst. 275, 110721 (2023)

    Article  Google Scholar 

  12. Feng, J., Zhou, Z.H.: Deep MIML network. In: Proceedings of the AAAI conference on artificial intelligence, pp. 1884–1890 (2017)

    Google Scholar 

  13. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1713–1721 (2015)

    Google Scholar 

  14. Zhu, W., Lou, Q., Vang, Y.S., et al.: Deep multi-instance networks with sparse label assignment for whole mammogram classification. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 603–611. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_69

    Chapter  Google Scholar 

  15. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136 (2018)

    Google Scholar 

  16. Chen, T., Kornblith, S., Norouzi, M., et al.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

  17. He, K., Fan, H., Wu, Y., et al.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  18. Caron, M., Touvron, H., Misra, I., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9650–9660 (2021)

    Google Scholar 

  19. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  20. Assran, M., Balestriero, R., Duval, Q., et al.: The hidden uniform cluster prior in self-supervised learning. arXiv preprint arXiv:2210.07277 (2022)

  21. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  22. Lu, M.Y., Williamson, D.F., Chen, T.Y., et al.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  23. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  24. Wu, Z., Xiong, Y., Yu, S.X., et al.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  25. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Q 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  26. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  27. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. arXiv preprint arXiv:2104.02057 (2021)

  30. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, W. et al. (2024). BS2CL: Balanced Self-supervised Contrastive Learning for Thyroid Cytology Whole Slide Image Multi-classification. In: Huang, DS., Zhang, C., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14868. Springer, Singapore. https://doi.org/10.1007/978-981-97-5600-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5600-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5599-8

  • Online ISBN: 978-981-97-5600-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics