Skip to main content

Beyond the Limits: Tackling Extreme Overexposure with Diffusion Model

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14872))

Included in the following conference series:

  • 637 Accesses

Abstract

In real-world photography scenarios, images suffer from overexposure due to overly bright environmental lighting conditions or incorrect camera settings. More severely, excessive illumination can cause extreme overexposure, where the brightness range exceeds the sensor’s recording capabilities and leads to loss of details in bright regions. We define these regions as brightness-saturated regions. We articulate the challenge of extremely overexposed image restoration in two aspects: firstly, the enhancement of image brightness and details; and secondly, restoring the information in the missing regions (i.e., the brightness-saturated regions). To address this issue, we propose a novel framework for extremely overexposed image restoration. Initially, we introduce an enhancement network aimed at adjusting the image’s brightness and contrast, striving to normalize the image’s brightness within the range of normal illumination. For the brightness-saturated regions, we first design a brightness extraction module to accurately extract them, and then we devise a semantic-guided large-model inpainting mechanism. Under the guidance of semantic information, we employ stable diffusion for information inpainting within these brightness-saturated regions, ensuring semantic consistency while maximally restoring the image. Compared to existing state-of-the-art methods, SEED achieves the best results on publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gouveia, L.C.P., Choubey, B.: Advances on CMOS image sensors. Sens. Rev. 36(3), 231–239 (2016)

    Article  Google Scholar 

  2. Huang, J., et al.: Deep Fourier-based exposure correction network with spatial-frequency interaction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13679, pp. 163–180. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_10

  3. Wang, H., Xu, K., Lau, R.W.: Local color distributions prior for image enhancement. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13678, pp. 343–359. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_20

  4. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo exposure correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9157–9167 (2021)

    Google Scholar 

  5. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  6. Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: OneFormer: one transformer to rule universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2989–2998 (2023)

    Google Scholar 

  7. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  8. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  9. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  10. Liang, D., et al.: Semantically contrastive learning for low-light image enhancement. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1555–1563 (2022)

    Google Scholar 

  11. Li, L., Liang, D., Gao, Y., Huang, S.J., Chen, S.: All-E: aesthetics-guided low-light image enhancement. arXiv preprint arXiv:2304.14610 (2023)

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  13. Hui, Z., Li, J., Wang, X., Gao, X.: Image fine-grained inpainting. arXiv preprint arXiv:2002.02609 (2020)

  14. Liu, H., Jiang, B., Song, Y., Huang, W., Yang, C.: Rethinking image inpainting via a mutual encoder-decoder with feature equalizations. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 12347, pp. 725–741. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_43

    Chapter  Google Scholar 

  15. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  16. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  17. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  18. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  19. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  20. Yuan, L., Sun, J.: Automatic exposure correction of consumer photographs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision – ECCV 2012. LNCS, vol. 7575, pp. 771–785. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_55

    Chapter  Google Scholar 

  21. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  22. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  23. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR 2011, pp. 97–104. IEEE (2011)

    Google Scholar 

  24. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 27(4), 2049–2062 (2018)

    Article  MathSciNet  Google Scholar 

  25. Liang, D., Xu, Z., Li, L., et al.: PIE: physics-inspired low-light enhancement. Int. J. Comput. Vis., 1–22 (2024)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under grant 62272229, the Natural Science Foundation of Jiangsu Province under grant BK20222012, and Shenzhen Science and Technology Program JCYJ20230807142001004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Li, Y., Dong, F., Liang, D. (2024). Beyond the Limits: Tackling Extreme Overexposure with Diffusion Model. In: Huang, DS., Pan, Y., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14872. Springer, Singapore. https://doi.org/10.1007/978-981-97-5612-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5612-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5611-7

  • Online ISBN: 978-981-97-5612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics