Skip to main content

COLORSHOP: Color Manipulation of Objects in Videos Using Diffusion Models

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14872))

Included in the following conference series:

  • 506 Accesses

Abstract

Diffusion models have unlocked unprecedented capabilities in image generation, while their video counterparts still lag behind due to the excessive training cost of temporal modeling. Besides the training burden, generated videos also suffer from issues of inconsistent appearance and structural flickering. To tackle these challenges, we have designed an optimization-free and zero fine-tuning framework called COLORSHOP to implementing editing of the appearance color of objects in a video based on the continuity of VAE in the latent space. When processing each frame, we introduce Foreground diffusion to accelerate the operation speed. During the generation process, we further propose Cross-Frame spatial feature fusion to enhance foreground continuity across frames. Experimental results have shown that, by combining the currently popular diffusion-based image editing algorithm, COLORSHOP has been proven successful in video editing tasks, demonstrating excellent performance in terms of consistency and quality.

H. Huang, L., Huang, L. Xu—Contributed equally to the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)

  2. Mokady, R., Hertz, A., Aberman, K., Pritch, Y., Cohen-Or, D.: Null-text inversion for editing real images using guided diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6038–6047 (2023)

    Google Scholar 

  3. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP Latents 1(2), 3 (2022). arXiv preprint arXiv:2204.06125

  4. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)

    Google Scholar 

  5. Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3836–3847 (2023)

    Google Scholar 

  6. Zhang, Y., Wei, Y., Jiang, D., Zhang, X., Zuo, W., Tian, Q.: ControlVideo: training-free controllable text-to-video generation. arXiv preprint arXiv:2305.13077 (2023)

  7. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  8. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  9. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4432–4441 (2019)

    Google Scholar 

  11. Alaluf, Y., Tov, O., Mokady, R., Gal, R., Bermano, A.: HyperStyle: StyleGAN inversion with HypernetWorks for real image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18511–18521 (2022)

    Google Scholar 

  12. Tumanyan, N., Geyer, M., Bagon, S., Dekel, T.: Plug-and-play diffusion features for text-driven image-to-image translation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1921–1930 (2023)

    Google Scholar 

  13. Parmar, G., Kumar Singh, K., Zhang, R., Li, Y., Lu, J., Zhu, J.-Y.: Zero-shot image-to-image translation. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–11 (2023)

    Google Scholar 

  14. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208–18218 (2022)

    Google Scholar 

  15. Wu, J.Z., et al.: Tune-a-video: one-shot tuning of image diffusion models for text-to-video generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7623–7633 (2023)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Qi, C., et al.: FateZero: fusing attentions for zero-shot text-based video editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15932–15942 (2023)

    Google Scholar 

  18. Song, J., Meng, C., Ermon: denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  19. Khachatryan, L., et al.: Text2Video-Zero: text-to-image diffusion models are zero-shot video generators. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15954–15964 (2023)

    Google Scholar 

  20. Chai, W., Guo, X., Wang, G., Lu, Y.: StableVideo: text-driven consistency-aware diffusion video editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 23040–23050 (2023)

    Google Scholar 

  21. Yang, S., Zhou, Y., Liu, Z., Loy, C.C.: Rerender a video: zero-shot text-guided video-to-video translation. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–11 (2023)

    Google Scholar 

  22. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  23. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  24. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 DAVIS challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  25. Liu, S., Zhang, Y., Li, W., Lin, Z., Jia, J.: Video-P2P: video editing with cross-attention control. arXiv preprint arXiv:2303.04761 (2023)

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (62376286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H., Huang, L., Xu, L., Wu, L., Zhang, X. (2024). COLORSHOP: Color Manipulation of Objects in Videos Using Diffusion Models. In: Huang, DS., Pan, Y., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14872. Springer, Singapore. https://doi.org/10.1007/978-981-97-5612-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5612-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5611-7

  • Online ISBN: 978-981-97-5612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics