Skip to main content

A New Multi-task Network for Autonomous Driving: Efficientnetv1_Unet

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14872))

Included in the following conference series:

  • 447 Accesses

Abstract

Multi-task networks have found widespread applications in the field of autonomous driving, particularly as perception tasks within multi-task learning continue to gain traction. We propose a novel multi-task network aimed at completing several tasks, including object detection, drivable area detection, lane detection, and height-width restriction detection. On the BDD100K dataset, our model achieves Recall at 94.1% for object detection and IoU at 27.7% for lane detection. Model introduces new task heads into a multi-task network using keypoint detection to address the height-width restriction detection. It demonstrates performance improvements compared to previous networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  2. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  3. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  5. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

    Google Scholar 

  6. Xie, Q., Hu, X., Ren, L., Qi, L., Sun, Z.: A binocular vision application in IoT: realtime trustworthy road condition detection system in passable area. IEEE Trans. Industr. Inf. 19(1), 973–983 (2022)

    Article  Google Scholar 

  7. Xie, Q., Long, Q., Li, J., Zhang, L., Hu, X.: Application of intelligence binocular vision sensor: mobility solutions for automotive perception system. IEEE Sens. J. 24, 5578–5592 (2023)

    Article  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  11. Wang, Z., Ren, W., Qiu, Q.: LaneNet: real-time lane detection networks for autonomous driving. arXiv preprint arXiv:1807.01726 (2018)

  12. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  13. Wu, D., et al.: YOLOP: you only look once for panoptic driving perception. Mach. Intell. Res. 19(6), 550–562 (2022)

    Article  Google Scholar 

  14. Vu, D., Ngo, B., Phan, H.: HybridNets: end-to-end perception network. arXiv preprint arXiv:2203.09035 (2022)

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv preprint arXiv:1412.7062 (2014)

  18. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arxiv. arXiv preprint arXiv:1706.055875 (2017)

  19. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  20. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  21. Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., Van Gool, L.: Multi-task learning for dense prediction tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3614–3633 (2021)

    Google Scholar 

  22. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1013–1020. IEEE (2018)

    Google Scholar 

  23. Qian, Y., Dolan, J.M., Yang, M.: DLT-Net: joint detection of drivable areas, lane lines, and traffic objects. IEEE Trans. Intell. Transp. Syst. 21(11), 4670–4679 (2019)

    Article  Google Scholar 

  24. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  25. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  26. Tang, H., Liu, J., Zhao, M., Gong, X.: Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations. In: Proceedings of the 14th ACM Conference on Recommender Systems, pp. 269–278 (2020)

    Google Scholar 

Download references

Acknowledgments

Thank Mr. Qian Long, Mr. Jiangtao Peng and Mr. Qiwei Xie for their guidance in the research process, Mr. Xinyi Yang for his help. This study was funded by Beijing Smart Eye Technology Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Long .

Editor information

Editors and Affiliations

Ethics declarations

Jiatian Li has received research grants from Beijing Smart Eye Technology Co. Ltd.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Peng, J., Meng, R., Long, Q., Luo, X. (2024). A New Multi-task Network for Autonomous Driving: Efficientnetv1_Unet. In: Huang, DS., Pan, Y., Zhang, Q. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14872. Springer, Singapore. https://doi.org/10.1007/978-981-97-5612-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5612-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5611-7

  • Online ISBN: 978-981-97-5612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics