Skip to main content

Enhancing Emotion Recognition in Conversation with Dialogue Discourse Structure and Commonsense Knowledge

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14878))

Included in the following conference series:

  • 618 Accesses

Abstract

Emotion Recognition in Conversations (ERC) is the task of identifying the emotions of utterances from speakers in a conversation, which is beneficial to many applications. In this paper, we introduce two kinds of external knowledge, i.e., dialogue discourse structure and social commonsense knowledge implied in dialogue to enhance representation and emotional reasoning. The dialogue discourse structure directly reveals the adjacent or long-distance dependencies between utterances and provides prior knowledge for the semantic interaction between utterances. Implicit commonsense knowledge in utterances can serve as emotional inference cues to model deeper inter-utterance emotional interactions. Specifically, we construct a discourse structure and commonsense knowledge enhanced graph structure over the conversation and use graph convolutional networks to incorporate historical context and commonsense knowledge for utterances. Experimental results show that incorporating discourse structure and commonsense knowledge can effectively improve the performance of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asher, N., Hunter, J., Morey, M., Benamara, F., Afantenos, S.: Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus. In: 10th International Conference on Language Resources and Evaluation (LREC 2016), pp. 2721–2727 (2016)

    Google Scholar 

  2. Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyilmaz, A., Choi, Y.: COMET: commonsense transformers for automatic knowledge graph construction. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 4762–4779 (2019)

    Google Scholar 

  3. Busso, C., et al.: IEMOCAP: interactive emotional dyadic motion capture database. Lang. Resour. Eval. 42, 335–359 (2008)

    Google Scholar 

  4. Firdaus, M., Singh, G.V., Ekbal, A., Bhattacharyya, P.: Affect-GCN: a multimodal graph convolutional network for multi-emotion with intensity recognition and sentiment analysis in dialogues. Multimed. Tools Appl., 1–22 (2023)

    Google Scholar 

  5. Ghosal, D., Majumder, N., Gelbukh, A., Mihalcea, R., Poria, S.: COSMIC: commonsense knowledge for emotion identification in conversations. arXiv preprint arXiv:2010.02795 (2020)

  6. Ghosal, D., Majumder, N., Poria, S., Chhaya, N., Gelbukh, A.: DialogueGCN: a graph convolutional neural network for emotion recognition in conversation. arXiv preprint arXiv:1908.11540 (2019)

  7. Ishiwatari, T., Yasuda, Y., Miyazaki, T., Goto, J.: Relation-aware graph attention networks with relational position encodings for emotion recognition in conversations. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7360–7370 (2020)

    Google Scholar 

  8. Jiao, W., Yang, H., King, I., Lyu, M.R.: HIGRU: hierarchical gated recurrent units for utterance-level emotion recognition. arXiv preprint arXiv:1904.04446 (2019)

  9. Kang, J., Kong, F.: DialogueTRGAT: temporal and relational graph attention network for emotion recognition in conversations. In: Lu, W., Huang, S., Hong, Y., Zhou, X. (eds.) NLPCC 2022. LNCS, vol. 13551, pp. 460–472. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17120-8_36

  10. Kumar, A., Dogra, P., Dabas, V.: Emotion analysis of Twitter using opinion mining. In: 2015 Eighth International Conference on Contemporary Computing (IC3), pp. 285–290. IEEE (2015)

    Google Scholar 

  11. Li, J., Lin, Z., Fu, P., Wang, W.: Past, present, and future: conversational emotion recognition through structural modeling of psychological knowledge. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1204–1214 (2021)

    Google Scholar 

  12. Li, W., Zhu, L., Mao, R., Cambria, E.: SKIER: a symbolic knowledge integrated model for conversational emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence (2023)

    Google Scholar 

  13. Liu, H., Singh, P.: ConceptNet—a practical commonsense reasoning toolkit. BT Technol. J. 22(4), 211–226 (2004)

    Google Scholar 

  14. Majumder, N., Poria, S., Hazarika, D., Mihalcea, R., Gelbukh, A., Cambria, E.: DialogueRNN: an attentive RNN for emotion detection in conversations. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 01, pp. 6818–6825 (2019)

    Google Scholar 

  15. Peng, S., et al.: Multi-source domain adaptation method for textual emotion classification using deep and broad learning. Knowl. Based Syst. 260, 110173 (2023)

    Google Scholar 

  16. Poria, S., Cambria, E., Hazarika, D., Majumder, N., Zadeh, A., Morency, L.P.: Context-dependent sentiment analysis in user-generated videos. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 873–883 (2017)

    Google Scholar 

  17. Poria, S., Hazarika, D., Majumder, N., Naik, G., Cambria, E., Mihalcea, R.: MELD: a multimodal multi-party dataset for emotion recognition in conversations. arXiv preprint arXiv:1810.02508 (2018)

  18. Sap, M., et al.: ATOMIC: an atlas of machine commonsense for if-then reasoning. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 01, pp. 3027–3035 (2019)

    Google Scholar 

  19. Shen, W., Chen, J., Quan, X., Xie, Z.: DialogXL: all-in-one XLNet for multi-party conversation emotion recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 15, pp. 13789–13797 (2021)

    Google Scholar 

  20. Shen, W., Wu, S., Yang, Y., Quan, X.: Directed acyclic graph network for conversational emotion recognition. arXiv preprint arXiv:2105.12907 (2021)

  21. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  22. Shi, Z., Huang, M.: A deep sequential model for discourse parsing on multi-party dialogues. In: Proceedings of the AAAI Conference on Artificial Intelligence, no. 01, pp. 7007–7014 (2019)

    Google Scholar 

  23. Song, R., Giunchiglia, F., Shi, L., Shen, Q., Xu, H.: SUNet: speaker-utterance interaction graph neural network for emotion recognition in conversations. Eng. Appl. Artif. Intell. 123, 106315 (2023)

    Google Scholar 

  24. Wen, J., Jiang, D., Tu, G., Liu, C., Cambria, E.: Dynamic interactive multiview memory network for emotion recognition in conversation. Inf. Fus. 91, 123–133 (2023)

    Google Scholar 

  25. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Zhang, D., Chen, X., Xu, S., Xu, B.: Knowledge aware emotion recognition in textual conversations via multi-task incremental transformer. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 4429–4440 (2020)

    Google Scholar 

  27. Zhao, W., Zhao, Y., Lu, X.: CauAIN: causal aware interaction network for emotion recognition in conversations. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI, pp. 4524–4530 (2022)

    Google Scholar 

  28. Zhong, P., Wang, D., Miao, C.: Knowledge-enriched transformer for emotion detection in textual conversations. arXiv preprint arXiv:1909.10681 (2019)

  29. Zhou, L., Gao, J., Li, D., Shum, H.Y.: The design and implementation of Xiaoice, an empathetic social chatbot. Comput. Linguist. 46(1), 53–93 (2020)

    Google Scholar 

  30. Zhu, L., Pergola, G., Gui, L., Zhou, D., He, Y.: Topic-driven and knowledge-aware transformer for dialogue emotion detection. arXiv preprint arXiv:2106.01071 (2021)

Download references

Acknowledgements

This work was supported by the Project 62276178 under the National Natural Science Foundation of China, the Key Project 23KJA520012 under the Natural Science Foundation of Jiangsu Higher Education Institutions and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, J., Kong, F., Kang, J. (2024). Enhancing Emotion Recognition in Conversation with Dialogue Discourse Structure and Commonsense Knowledge. In: Huang, DS., Si, Z., Zhang, C. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14878. Springer, Singapore. https://doi.org/10.1007/978-981-97-5672-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5672-8_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5671-1

  • Online ISBN: 978-981-97-5672-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics