Skip to main content

Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14880))

Included in the following conference series:

  • 627 Accesses

Abstract

The primary challenge in traffic flow prediction centers on effectively capturing the spatio-temporal dependencies within traffic data. To address these challenges, we propose a Spatio-Temporal Feature Fusion Model based on Transformer and a Global Feature Mining Module. The aim is to overcome the high resource consumption issue of the Transformer model when processing large-scale traffic data, as well as its potential shortcomings in capturing subtle spatio-temporal dynamics. The model is capable of precisely capturing the spatio-temporal characteristics of traffic data, achieving seamless integration of temporal and spatial correlations, and revealing the interconnections between global and local features. Through extensive experiments on five real-world traffic datasets, the research results demonstrate a significant improvement in prediction accuracy of our proposed method compared to existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., Hu, J., Meng, Q., et al.: Short-time traffic flow prediction with ARIMA-GARCH model. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 607–612. IEEE (2011)

    Google Scholar 

  2. Polson, N.G., Sokolov, V.O.: Deep learning for short-term traffic flow prediction. Transp. Res. Part C: Emerg. Technol. 79, 1–17 (2017)

    Article  Google Scholar 

  3. Hong, W.C.: Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. 21, 583–593 (2012)

    Article  Google Scholar 

  4. Luo, X., Li, D., Yang, Y., et al.: Spatiotemporal traffic flow prediction with KNN and LSTM. J. Adv. Transp. 2019 (2019)

    Google Scholar 

  5. Zhang, W., Yu, Y., Qi, Y., et al.: Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning. Transportmetrica A: Transp. Sci. 15(2), 1688–1711 (2019)

    Article  Google Scholar 

  6. Cheng, X., Zhang, R., Zhou, J., et al.: Deeptransport: learning spatial-temporal dependency for traffic condition forecasting. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  7. Li, Y., Yu, R., Shahabi, C., et al.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  8. Lu, S., Zhang, Q., Chen, G., et al.: A combined method for short-term traffic flow prediction based on recurrent neural network. Alex. Eng. J. 60(1), 87–94 (2021)

    Article  Google Scholar 

  9. Zhang, T., Guo, G.: Graph attention LSTM: a spatiotemporal approach for traffic flow forecasting. IEEE Intell. Transp. Syst. Mag. 14(2), 190–196 (2020)

    Article  Google Scholar 

  10. Rahmani, S., Baghbani, A., Bouguila, N., et al.: Graph neural networks for intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. (2023)

    Google Scholar 

  11. Cai, L., Janowicz, K., Mai, G., et al.: Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting. Trans. GIS 24(3), 736–755 (2020)

    Article  Google Scholar 

  12. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Ye, X., Fang, S., Sun, F., et al.: Meta graph transformer: a novel framework for spatial–temporal traffic prediction. Neurocomputing 491, 544–563 (2022)

    Article  Google Scholar 

  14. Xu, M., Dai, W., Liu, C., et al.: Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint arXiv:2001.02908 (2020)

  15. Song, C., Lin, Y., Guo, S., et al.: Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 914–921 (2020)

    Google Scholar 

  16. Wu, Z., Pan, S., Long, G., et al.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  17. Choi, J., Choi, H., Hwang, J., et al.: Graph neural controlled differential equations for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 6, pp. 6367–6374 (2022)

    Google Scholar 

  18. Shao, Z., Zhang, Z., Wang, F., et al.: Spatial-temporal identity: a simple yet effective baseline for multivariate time series forecasting. In: Proceedings of the 31st ACM International Conference on Information and Knowledge Management, pp. 4454–4458 (2022)

    Google Scholar 

  19. Guo, S., Lin, Y., Wan, H., et al.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Trans. Knowl. Data Eng. 34(11), 5415–5428 (2021)

    Article  Google Scholar 

  20. Yan, H., Ma, X., Pu, Z.: Learning dynamic and hierarchical traffic spatiotemporal features with transformer. IEEE Trans. Intell. Transp. Syst. 23(11), 22386–22399 (2021)

    Article  Google Scholar 

  21. Jiang, J., Han, C., Zhao, W.X., et al.: PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction. arXiv preprint arXiv:2301.07945 (2023)

  22. Liu, H., Dong, Z., Jiang, R., et al.: Spatio-temporal adaptive embedding makes vanilla transformer sota for traffic forecasting. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 4125–4129 (2023)

    Google Scholar 

  23. Zheng, C., Fan, X., , C., et al.: Gman: a graph multi-attention network for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 1234–1241 (2020)

    Google Scholar 

  24. Deng, J., Chen, X., Jiang, R., et al.: St-norm: spatial and temporal normalization for multi-variate time series forecasting. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 269–278 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported partly by National Natural Science Foundation of China (Nos. 61772249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangfu Meng .

Editor information

Editors and Affiliations

Ethics declarations

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, X., Bai, Y., Li, M., Cai, Z. (2024). Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction. In: Huang, DS., Si, Z., Chen, W. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14880. Springer, Singapore. https://doi.org/10.1007/978-981-97-5678-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5678-0_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5677-3

  • Online ISBN: 978-981-97-5678-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics