Skip to main content

LegalGPT: Legal Chain of Thought for the Legal Large Language Model Multi-agent Framework

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14880))

Included in the following conference series:

  • 978 Accesses

Abstract

This paper delves into the application of Large Language Models (LLMs) in the field of legal task processing with a specific focus on the emerging capabilities these models have demonstrated in complex reasoning and zero-shot learning (ZSL). By introducing a multi-intelligence framework based on Large Scale Legal Language Modeling, the research aims to improve the efficiency and performance of the models across a wide range of functions including legal review, consultation, and judicial decision-making. The framework utilizes function-specific legal chains of thoughts and specialized agents to guide the LLMs to handle legal tasks, optimize response behaviors, and enhance reasoning capabilities. The study also incorporates an information retrieval module to address the common hallucination problem of LLMs, thereby improving response reliability and enhancing the model's ability to tackle complex legal issues. The evaluation of the LegalGPT model shows that it indeed outperforms the existing legal LLMs in terms of accuracy, completeness, and linguistic quality in several Chinese legal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  2. Black, S., et al.: GPT-NeoX-20B: an open-source autoregressive language model. arXiv preprint arXiv:2204.06745 (2022)

  3. Zhang, S., et al.: OPT: open pre-trained transformer Language models. arXiv preprint arXiv:2205.01068 (2022)

  4. Smith, S., et al.: Using deepspeed and megatron to train megatron-turing NLG 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990 (2022)

  5. OpenAI: GPT-4 Technical report. arXiv abs/2303.08774 (2023)

    Google Scholar 

  6. Penedo, G., et al.: The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116 (2023)

    Google Scholar 

  7. Anil, R., et al.: PaLM 2 technical report. arXiv preprint arXiv:2305.10403 (2023)

    Google Scholar 

  8. Araci, D.: FinBERT: financial sentiment analysis with pre-trained language models. arXiv preprint arXiv:1908.10063 (2019)

    Google Scholar 

  9. Huang, K., Altosaar, J., Ranganath, R.: ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv preprint arXiv:1904.05342 (2019)

  10. Wu, S., et al.: BloombergGPT: a large language model for finance. arXiv preprint arXiv:2303.17564 (2023)

    Google Scholar 

  11. Driess, D., et al.: PaLM-E: an embodied multimodal language model. arXiv preprint arXiv:2303.03378 (2023)

    Google Scholar 

  12. Huang, S., et al.: Instruct2ACT: mapping multi-modality instructions to robotic actions with large language model. arXiv preprint arXiv:2305.11176 (2023)

    Google Scholar 

  13. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural. Inf. Process. Syst. 35, 24824–24837 (2022)

    Google Scholar 

  14. Wang, X., et al.: Self-consistency improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171 (2022)

    Google Scholar 

  15. Kıcıman, E., et al.: Causal reasoning and large language models: opening a new frontier for causality. arXiv preprint arXiv:2305.00050 (2023)

    Google Scholar 

  16. Kojima, T., et al.: Large language models are zero-shot reasoners. Adv. Neural. Inf. Process. Syst. 35, 22199–22213 (2022)

    Google Scholar 

  17. Wan, X., et al.: Better zero-shot reasoning with self-adaptive prompting. arXiv preprint arXiv:2305.14106 (2023)

  18. Yao, S., et al.: ReAct: synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 (2022)

  19. Shinn, N., et al.: Reflexion: language agents with verbal reinforcement learning. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  20. Park, J.S., et al.: Generative agents: interactive simulacra of human behavior. In: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (2023)

    Google Scholar 

  21. Wang, L., et al.: A survey on large language model based autonomous agents. arXiv preprint arXiv:2308.11432 (2023)

  22. Xi, Z., et al.: The rise and potential of large language model based agents: a survey. arXiv preprint arXiv:2309.07864 (2023)

  23. Wang, L., et al.: Plan-and-solve prompting: improving zero-shot chain-of-thought reasoning by large language models. arXiv preprint arXiv:2305.04091 (2023)

  24. Liu, P., et al.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)

    Article  Google Scholar 

  25. Sartor, G.: Legal reasoning. Treatise Legal Philos. Gen. Jurisprud. 5 (2005)

    Google Scholar 

  26. Jansen, B.J., et al.: The illusion of data validity: why numbers about people are likely wrong. Data Inf. Manage. 6(4), 100020 (2022)

    Google Scholar 

  27. Chen, J., et al.: S-Agents: self-organizing agents in open-ended environment. arXiv preprint arXiv:2402.04578 (2024)

  28. Zhuge, M., et al.: Mindstorms in natural language-based societies of mind. arXiv preprint arXiv:2305.17066 (2023)

  29. Hao, R., et al.: ChatLLM network: More brains, more intelligence. arXiv preprint arXiv:2304.12998 (2023)

  30. Liu, R., et al.: Training socially aligned language models in simulated human society. arXiv preprint arXiv:2305.16960 (2023)

  31. Cai, T., et al.: Large language models as tool makers. arXiv preprint arXiv:2305.17126 (2023)

  32. Yu, F., Quartey, L., Schilder, F.: Legal prompting: teaching a language model to think like a lawyer. arXiv preprint arXiv:2212.01326 (2022)

  33. Jiang, C., Yang, X.: Legal syllogism prompting: teaching large language models for legal judgment prediction. In: Proceedings of the Nineteenth International Conference on Artificial Intelligence and Law (2023)

    Google Scholar 

  34. Zhong, H., et al.: JEC-QA: a legal-domain question answering dataset. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  35. Duan, X., et al.: CJRC: a reliable human-annotated benchmark dataset for chinese judicial reading comprehension. In: Sun, M., HUANG, X., Ji, H., Liu, Z., Liu, Y. (eds.) CCL 111112019. LNCS (LNAI), vol. 11856, pp. 439–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32381-3_36

    Chapter  Google Scholar 

  36. Huang, Q., et al.: Lawyer llama technical report. arXiv preprint arXiv:2305.15062 (2023)

  37. Nguyen, H.-T.: A brief report on lawGPT 1.0: a virtual legal assistant based on GPT-3. arXiv preprint arXiv:2302.05729 (2023)

  38. Hassanzadeh, T., Meybodi, M.R.: A new hybrid approach for data clustering using firefly algorithm and K-means. In: Proceedings of the 16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP 2012). IEEE (2012)

    Google Scholar 

  39. Yue, S., et al.: DISC-LawLLM: fine-tuning large language models for intelligent legal services. arXiv preprint arXiv:2309.11325 (2023)

  40. Lu, J., et al.: Ziya-VL: bilingual large vision-language model via multi-task instruction tuning. arXiv preprint arXiv:2310.08166 (2023)

  41. Du, Z., et al.: GLM: general language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360 (2021)

    Google Scholar 

  42. Yang, A., et al.: Baichuan 2: open large-scale language models. arXiv preprint arXiv:2309.10305 (2023)

  43. Dai, Y., et al.: LAiW: a Chinese legal large language models benchmark (a technical report). arXiv preprint arXiv:2310.05620 (2023)

  44. Cui, J., et al.: ChatLaw: open-source legal large language model with integrated external knowledge bases. arXiv preprint arXiv:2306.16092 (2023)

Download references

Acknowledgment

This work is supported by the National Key Research and Development Program of China (2021YFC3300500); This work is also supported in part by the Natural Science Foundation of China under Grant U20B2047, U20B2053, U19B2044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, J., Guo, Q., Liao, Y., Liang, S. (2024). LegalGPT: Legal Chain of Thought for the Legal Large Language Model Multi-agent Framework. In: Huang, DS., Si, Z., Chen, W. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science(), vol 14880. Springer, Singapore. https://doi.org/10.1007/978-981-97-5678-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5678-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5677-3

  • Online ISBN: 978-981-97-5678-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics