Skip to main content

Spatial Domain Identifying: Graph Attention Network with Two Different Decoders

  • Conference paper
  • First Online:
Advanced Intelligent Computing in Bioinformatics (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14881))

Included in the following conference series:

  • 478 Accesses

Abstract

Exploring spatial domains to investigate tissue structures is a chance provided by spatial transcriptome technology, while also a significant challenge in spatial transcriptomics research. Current approaches only focus on spatial gene expression and cannot simultaneously incorporate spatial location information. Graph deep learning models can simultaneously encode node features and positional information. However, during decoding, most of the models still only focus on reconstructing feature information, ignoring positional information. Here, we propose a new method, DeepDomain, which aims to improve the latent representation of nodes by jointly reconstructing gene expression profiles and spatial neighborhood networks using a deep graph attention network with two distinct decoders. Utilizing enhanced spatial latent representations to identify spatial domains in three datasets, DeepDomain achieved higher accuracy in evaluation metrics and a better description of organizational structure when compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao, A., Barkley, D., Franca, G.S., Yanai, I.: Exploring tissue architecture using spatial transcriptomics. Nature 596(7871), 211–220 (2021). https://doi.org/10.1038/s41586-021-03634-9

    Article  Google Scholar 

  2. Wang, X., et al.: Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science (New York, NY) 361(6400) (2018). https://doi.org/10.1126/science.aat5691

  3. Baron M., et al.: The stress-like cancer cell state is a consistent component of tumorigenesis. Cell Syst. 11(5), 536–46.e7 (2020). https://doi.org/10.1016/j.cels.2020.08.018

  4. Moncada, R., et al.: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnol. 38(3), 333–42 (2020). https://doi.org/10.1038/s41587-019-0392-8

  5. Chen, J., Xu, H., Tao, W., Chen, Z., Zhao, Y., Han, J.J.: Transformer for one stop interpretable cell type annotation. Nat. Commun. 14(1), 223 (2023). https://doi.org/10.1038/s41467-023-35923-4

    Article  Google Scholar 

  6. Li, X., et al.: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 11(1), 2338 (2020). https://doi.org/10.1038/s41467-020-15851-3

    Article  Google Scholar 

  7. Hu, J., et al.: SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat. Methods 18(11), 1342–1351 (2021). https://doi.org/10.1038/s41592-021-01255-8

    Article  Google Scholar 

  8. Dong, K., Zhang, S.: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13(1), 1739 (2022). https://doi.org/10.1038/s41467-022-29439-6

    Article  Google Scholar 

  9. Yongshuo, Z., Tingyang, Y., Xuesong, W., Yixuan, W., Zhihang, H, Yu L.: conST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. bioRxiv. 2022.01.14.476408 (2022). https://doi.org/10.1101/2022.01.14.476408

  10. Ren, H., Walker, B.L., Cang, Z., Nie, Q.: Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nat. Commun. 13(1), 4076 (2022). https://doi.org/10.1038/s41467-022-31739-w

    Article  Google Scholar 

  11. Zhao, E., Stone, M.R., Ren, X., Guenthoer, J., Smythe, K.S., Pulliam, T., et al.: Spatial transcriptomics at subspot resolution with BayesSpace. Nat. Biotechnol. 39(11), 1375–1384 (2021). https://doi.org/10.1038/s41587-021-00935-2

    Article  Google Scholar 

  12. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.J.S.: Graph Attention Netw. 1050(20), 10–48550 (2017)

    Google Scholar 

  13. Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: Mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J. 8(1), 289–317 (2016)

    Article  Google Scholar 

  14. Maynard, K.R., et al.: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat. Neurosci. 24(3), 425–436 (2021). https://doi.org/10.1038/s41593-020-00787-0

    Article  Google Scholar 

  15. Wolf, F.A., Angerer, P., Theis, F.J.: SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19(1), 15 (2018). https://doi.org/10.1186/s13059-017-1382-0

    Article  Google Scholar 

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011). https://doi.org/10.48550/arXiv.1201.0490

    Article  MathSciNet  Google Scholar 

  17. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A.: Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33(5), 495–502 (2015). https://doi.org/10.1038/nbt.3192

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 62131004), the National Key R&D Program of China (2022ZD0117700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Zou, Q. (2024). Spatial Domain Identifying: Graph Attention Network with Two Different Decoders. In: Huang, DS., Zhang, Q., Guo, J. (eds) Advanced Intelligent Computing in Bioinformatics. ICIC 2024. Lecture Notes in Computer Science(), vol 14881. Springer, Singapore. https://doi.org/10.1007/978-981-97-5689-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5689-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5688-9

  • Online ISBN: 978-981-97-5689-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics