Skip to main content

Characterizing the Influence of Topology on Graph Learning Tasks

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14851))

Included in the following conference series:

  • 90 Accesses

Abstract

Graph neural networks (GNN) have achieved remarkable success in a wide range of tasks by encoding features combined with topology to create effective representations. However, the fundamental problem of understanding and analyzing how graph topology influences the performance of learning models on downstream tasks has not yet been well understood. In this paper, we propose a metric, TopoInf, which characterizes the influence of graph topology by measuring the level of compatibility between the topological information of graph data and downstream task objectives. We provide analysis based on the decoupled GNNs on the contextual stochastic block model to demonstrate the effectiveness of the metric. Through extensive experiments, we demonstrate that TopoInf is an effective metric for measuring topological influence on corresponding tasks and can be further leveraged to enhance graph learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chanpuriya, S., Musco, C.: Simplified graph convolution with heterophily. In: NeurIPS (2022)

    Google Scholar 

  2. Chen, D., Lin, Y., Li, W., et al.: Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. In: AAAI (2020)

    Google Scholar 

  3. Chen, M., Wei, Z., Huang, Z., et al.: Simple and deep graph convolutional networks. In: ICML (2020)

    Google Scholar 

  4. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank graph neural network. In: ICLR (2021)

    Google Scholar 

  5. Chin, A., Chen, Y., M. Altenburger, K., Ugander, J.: Decoupled smoothing on graphs. In: WWW (2019)

    Google Scholar 

  6. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NeurIPS (2016)

    Google Scholar 

  7. Deshpande, Y., Montanari, A., Mossel, E., Sen, S.: Contextual stochastic block models. In: NeurIPS (2018)

    Google Scholar 

  8. Dong, H., Chen, J., Feng, F., et al.: On the equivalence of decoupled graph convolution network and label propagation. In: WWW (2021)

    Google Scholar 

  9. Dong, M., Kluger, Y.: Towards understanding and reducing graph structural noise for GNNs. In: ICML (2023)

    Google Scholar 

  10. Du, J., Zhang, S., Wu, G., Moura, J.M.F., Kar, S.: Topology adaptive graph convolutional networks. arXiv preprint arXiv:1710.10370 (2018)

  11. He, M., Wei, Z., Huang, Z., Xu, H.: BernNet: learning arbitrary graph spectral filters via bernstein approximation. In: NeurIPS (2021)

    Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  13. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized PageRank. In: ICLR (2019)

    Google Scholar 

  14. Luo, D., Cheng, W., Yu, W., et al.: Learning to drop: robust graph neural network via topological denoising. In: WSDM (2021)

    Google Scholar 

  15. Ma, Y., Liu, X., Shah, N., et al.: Is homophily a necessity for graph neural networks? arXiv preprint arXiv:2106.06134 (2021)

  16. Nt, H., Maehara, T.: Revisiting graph neural networks: all we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019)

  17. Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: ICLR (2020)

    Google Scholar 

  18. Ren, Y., Bai, J., Zhang, J.: Label contrastive coding based graph neural network for graph classification. In: DASFAA (2021)

    Google Scholar 

  19. Rong, Y., Huang, W., Xu, T., Huang, J.: DropEdge: towards deep graph convolutional networks on node classification. In: ICLR (2020)

    Google Scholar 

  20. Sen, P., Namata, G., Bilgic, M., et al.: Collective classification in network data. AI Mag. 29(3) (2008)

    Google Scholar 

  21. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018)

  22. Sun, S., Yuxiang, R., et al.: Large language models as topological structure enhancers for text-attributed graphs. arXiv preprint arXiv:2311.14324 (2024)

  23. Topping, J., Di Giovanni, F., Chamberlain, B.P., et al.: Understanding over-squashing and bottlenecks on graphs via curvature. In: ICLR (2022)

    Google Scholar 

  24. Bai, J., Ren, Y., Zhang, J.: Measuring and sampling: a metric-guided subgraph learning framework for graph neural network. Int. J. Intell, Syst (2022)

    MATH  Google Scholar 

  25. Veli?kovi?, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  26. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: ICML (2019)

    Google Scholar 

  27. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: ICLR (2019)

    Google Scholar 

  28. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: WWW (2016)

    Google Scholar 

  29. Zhang, W., Yang, M., Sheng, Z., et al.: Node-dependent local smoothing for scalable graph learning. In: NeurIPS (2021)

    Google Scholar 

  30. Zhu, H., Koniusz, P.: Simple spectral graph convolution. In: ICLR (2021)

    Google Scholar 

  31. Zhu, J., Rossi, R.A., Rao, A., et al.: Graph neural networks with heterophily. In: AAAI (2021)

    Google Scholar 

  32. Zhu, J., Yan, Y., et al.: Beyond homophily in graph neural networks: current limitations and effective designs. In: NeurIPS (2020)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key Research and Development Plan No. 2022YFB3904204, NSF China under Grant No. 62202299, 62020106005, 61960206002, Shanghai Natural Science Foundation No. 22ZR1429100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, K. et al. (2025). Characterizing the Influence of Topology on Graph Learning Tasks. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14851. Springer, Singapore. https://doi.org/10.1007/978-981-97-5779-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5779-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5778-7

  • Online ISBN: 978-981-97-5779-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics