Abstract
For properly make decisions in the real estate market, the process of forecasting the prices of residential real estate is very important. The aim of this research is to develop a method for forecasting residential real estate prices, using deep learning. The multi-layer perceptron with Bayesian optimization has been used. The results show that the developed approach can make satisfactory predictions, close to the real values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Louati, A., Lahyani, R., Aldaej, A., Aldumaykhi, A., Otai, S.: Price forecasting for real estate using machine learning: a case study on Riyadh city. Concurrency Comput. Pract. Exp. 34(6), e6748 (2022)
Gnat, S., Doszyń, M.: Parametric and non-parametric methods in mass appraisal on poorly developed real estate markets. Eur. Res. Stud. J. 23(4), 1230–1245 (2020). https://doi.org/10.35808/ersj/1740
Chiarazzo, V., Caggiani, L., Marinelli, M., Ottomanelli, M.: A neural network based model for real estate price estimation considering environmental quality of property location. Transp. Res. Procedia 3, 810–817 (2014)
Anysz H., Podwórna M., Ibadov N., Lennerts K., Dikarev K.: Hybrid predictions of the homogenous properties market value with the use of ANN. Arch. Civil Eng. LXVII(1), 286–301 (2021). https://doi.org/10.24425/ace.2021.136474
Shi, D., Zhang, H., Guan, J., Zurada, J., Chen, Z., Li, X.: Deep learning in predicting real estate property prices: a comparative study. In: Proceedings of the 56th Hawaii International Conference on System Sciences (2023)
Cegielski, D.: House Prices in Poland. https://www.kaggle.com/datasets/dawidcegielski/house-prices-in-poland. Accessed 16 Jan 2023
Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc., Sebastopol (2022)
Bruce, P., Bruce, A., Gedeck, P.: Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. O’Reilly Media, Sebastopol (2020)
Sivasankari, S.S., Surendiran, J., Yuvaraj, N., Ramkumar, M., Ravi, C.N., Vidhya, R.G.: Classification of diabetes using multilayer perceptron. In: 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE), pp. 1–5. IEEE (2022)
Wadekar, S.: Hyperparameter Tuning in Keras: TensorFlow 2: With Keras Tuner: RandomSearch, Hyperband, BayesianOptimization. The Startup (2021). https://medium.com/swlh/hyperparameter-tuning-in-keras-tensorflow-2-with-keras-tuner-randomsearch-hyperband-3e212647778f. Accessed Sept 2023
AdamW. Keras 2 API documentation. https://keras.io/2.15/api/optimizers/adamw/. Accessed Sept 2023
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Frącz, M., Hernes, M. (2024). Forecasting Residential Real Estate Prices Using Deep Learning. In: Nguyen, N.T., et al. Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2024. Communications in Computer and Information Science, vol 2145. Springer, Singapore. https://doi.org/10.1007/978-981-97-5934-7_17
Download citation
DOI: https://doi.org/10.1007/978-981-97-5934-7_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5933-0
Online ISBN: 978-981-97-5934-7
eBook Packages: Computer ScienceComputer Science (R0)