Skip to main content

Automatic Detection of Serve Actions in Tennis Videos

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2145))

Included in the following conference series:

  • 109 Accesses

Abstract

The analysis, annotation, and indexing of sports videos are still a very significant and interesting challenge in the computer vision area. It is due to the fact that sports videos are the most frequently watched videos in the Internet, widely broadcasted in special TV channels, and presented every day in sports news. Videos of the most popular sports disciplines such as football, soccer, basketball, volleyball, ice hockey, or tennis are particularly studied in theoretical investigations as well as tested in experimental research. The aim of the analysis of sports videos is, among others, temporal segmentation and extraction of highlights. In tennis, which is very popular and eagerly watched, the service is a shot that starts every point in the tennis game, therefore, serves are natural and obvious boundaries of events and can play the role of cuts in editing videos making the temporal segmentation of continuous tennis video possible. Then some segments can be chosen from the video segmented in this way as the highlights, for example tennis aces. The goal of this paper is to present a method of detecting serve actions as highlights in tennis videos. The proposed framework is based on a neural network classification preceded by the recognition of playing fields and players’ positions on a tennis court as well as the analysis of players’ silhouettes. The tests performed have confirmed the efficiency of the proposed framework of the automatic detection of serves in tennis matches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pareek, P., Thakkar, A.: A survey on video-based human action recognition: recent updates, datasets, challenges, and applications. Artif. Intell. Rev. 54, 2259–2322 (2021). https://doi.org/10.1007/s10462-020-09904-8

    Article  Google Scholar 

  2. Host, K., Ivašić-Kos, M.: An overview of human action recognition in sports based on computer vision. Heliyon 8(6), e09633 (2022). https://doi.org/10.1016/j.heliyon.2022.e09633

    Article  Google Scholar 

  3. Kong, Y., Fu, Y.: Human action recognition and prediction: a survey. Int. J. Comput. Vis. 130(5), 1366–1401 (2022). https://doi.org/10.48550/arXiv.1806.11230

    Article  Google Scholar 

  4. Naik, B.T., Hashmi, M.F., Bokde, N.D.: A comprehensive review of computer vision in sports: open issues, future trends and research directions. Appl. Sci. 12(9), 4429 (2022). https://doi.org/10.3390/app12094429

    Article  Google Scholar 

  5. Wu, F., et al.: A survey on video action recognition in sports: datasets, methods and applications. IEEE Trans. Multimed. (early access) (2022). https://doi.org/10.1109/TMM.2022.3232034

  6. Kamble, P.R., Keskar, A.G., Bhurchandi, K.M.: Ball tracking in sports: a survey. Artif. Intell. Rev. 52, 1655–1705 (2019). https://doi.org/10.1007/s10462-017-9582-2

    Article  Google Scholar 

  7. Owens, N., Harris, C., Stennett, C.: Hawk-eye tennis system. In: International Conference on Visual Information Engineering. VIE 2003, pp. 182–185, IET (2003). https://doi.org/10.1049/cp:20030517

  8. Terroba, A., Kosters, W., Varona, J., Manresa-Yee, C.S.: Finding optimal strategies in tennis from video sequences. Int. J. Pattern Recogn. Artif. Intell. 27(06), 1355010 (2013). https://doi.org/10.1142/S0218001413550100

    Article  Google Scholar 

  9. Kocib, T., Carboch, J., Cabela, M., Kresta, J.: Tactics in tennis doubles: analysis of the formations used by the serving and receiving teams. Int. J. Phys. Educ. Fit. Sports 9(2), 45–50 (2020). https://doi.org/10.34256/ijpefs2026

    Article  Google Scholar 

  10. Khan, A.A., Shao, J., Ali, W., Tumrani, S.: Content-aware summarization of broadcast sports videos: an audio–visual feature extraction approach. Neural. Process. Lett. 52, 1945–1968 (2020). https://doi.org/10.1007/s11063-020-10200-3

    Article  Google Scholar 

  11. Meena, P., Kumar, H., Yadav, S.K.: A review on video summarization techniques. Eng. Appl. Artif. Intell. 118, 105667 (2023). https://doi.org/10.1016/j.engappai.2022.105667

    Article  Google Scholar 

  12. Cuevas, C., Quilón, D., García, N.: Techniques and applications for soccer video analysis: a survey. Multimed. Tools Appl. 79(39–40), 29685–29721 (2020). https://doi.org/10.1007/s11042-020-09409-0

    Article  Google Scholar 

  13. Polk, T., Yang, J., Hu, Y., Zhao, Y.: TenniVis: visualization for tennis match analysis. IEEE Trans. Vis. Comput. Graph. 20(12), 2339–2348 (2014). https://doi.org/10.1109/TVCG.2014.2346445

    Article  Google Scholar 

  14. Merler, M., et al.: Automatic curation of sports highlights using multimodal excitement features. IEEE Trans. Multimed. 21(5), 1147–1160 (2018). https://doi.org/10.1109/TMM.2018.2876046

    Article  Google Scholar 

  15. Lara, J.P.R., Vieira, C.L.R., Misuta, M.S., Moura, F.A., Barros, R.M.L.D.: Validation of a video-based system for automatic tracking of tennis players. Int. J. Perform. Anal. Sport 18(1), 137–150 (2018). https://doi.org/10.1080/24748668.2018.1456886

    Article  Google Scholar 

  16. Kurose, R., Hayashi, M., Ishii, T., Aoki, Y.: Player pose analysis in tennis video based on pose estimation. In: IWAIT’2018, pp. 1–4. IEEE (2018). https://doi.org/10.1109/IWAIT.2018.8369762

  17. Kooin, J., Haneol, K.: Comparison of the tennis serve performance: a case study of an elite Korean tennis player. Int. J. Hum. Mov. Sci. 16(1), 77–85 (2022). https://doi.org/10.23949/ijhms.2022.04.16.1.6

    Article  Google Scholar 

  18. Martin, C., Bideau, B., Bideau, N., Nicolas, G., Delamarche, P., Kulpa, R.: Energy flow analysis during the tennis serve: comparison between injured and noninjured tennis players. Am. J. Sports Med. 42(11), 2751–2760 (2014). https://doi.org/10.1177/0363546514547173

    Article  Google Scholar 

  19. Reid, M., Giblin, G., Whiteside, D.: A kinematic comparison of the overhand throw and tennis serve in tennis players: how similar are they really? J. Sports Sci. 33(7), 713–723 (2015). https://doi.org/10.1080/02640414.2014.962572

    Article  Google Scholar 

  20. Abrams, G.D., Sheets, A.L., Andriacchi, T.P.: Review of tennis serve motion analysis and the biomechanics of three serve types with implications for injury. In: G. Fleisig, Y-H. Kwon (eds.) The Biomechanics of Batting, Swinging, and Hitting, pp. 144–156. Routledge, London (2016). https://doi.org/10.4324/9781315539850

  21. Tubez, F., et al.: Which tool for a tennis serve evaluation? A review. Int. J. Perform. Anal. 17(6), 1007–1033 (2017). https://doi.org/10.1080/24748668.2017.1419407

    Article  Google Scholar 

  22. Huang, Y.P., Chiou, C.L., Sandnes, F.E.: An intelligent strategy for the automatic detection of highlights in tennis video recordings. Expert Syst. Appl. 36(6), 9907–9918 (2009). https://doi.org/10.1016/j.eswa.2009.01.078

    Article  Google Scholar 

  23. Gourgari, S., et al.: THETIS: three dimensional tennis shots. A human action dataset. In: IEEE CVPR’2013, pp. 676–681 (2013). https://doi.org/10.1109/CVPRW.2013.102

  24. Mora, V.S., Knottenbelt, W.J.: Deep learning for domain-specific action recognition in tennis. In: IEEE CVPR’2017, pp. 114–122 (2017). https://doi.org/10.1109/CVPRW.2017.27

  25. Reno, V., et al.: Convolutional neural networks based ball detection in tennis games. In: IEEE CVPR’2018, pp. 1758–1764 (2018). https://doi.org/10.1109/CVPRW.2018.00228

  26. Ganser, A., Hollaus, B., Stabinger, S.: Classification of tennis shots with a neural network approach. Sensors 21(17), s21175703 (2021). https://doi.org/10.3390/s21175703

    Article  Google Scholar 

  27. Zhang, X., Chen, J.: A tennis training action analysis model based on graph convolutional neural network. IEEE 11, 113264–113271 (2023). https://doi.org/10.1109/ACCESS.2023.3324425

    Article  Google Scholar 

  28. Wu, M., et al.: A real-time tennis level evaluation and strokes classification system based on the Internet of Things. Internet Things 17(100494), 1–17 (2022). https://doi.org/10.1016/j.iot.2021.100494

    Article  Google Scholar 

  29. Hu, R.: IoT-based analysis of tennis player’s serving behavior using image processing. Soft. Comput. 27(19), 14413–14429 (2023). https://doi.org/10.1007/s00500-023-09031-w

    Article  Google Scholar 

  30. Zhang, Y., Hou, X.: Application of video image processing in sports action recognition based on particle swarm optimization algorithm. Prev. Med. 173, 107592 (2023). https://doi.org/10.1016/j.ypmed.2023.107592

    Article  Google Scholar 

  31. Ye, R., Zhao, D., Zhang, M., Liu, W.: Nash equilibrium and tennis serve performance: a game theory analysis. Int. J. Perform. Anal. Sport 23(6), 515–526 (2023). https://doi.org/10.1080/24748668.2023.2256120

    Article  Google Scholar 

  32. Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of YOLO algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022). https://doi.org/10.1016/j.procs.2022.01.135

    Article  Google Scholar 

  33. Diwan, T., Anirudh, G., Tembhurne, J.V.: Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 82(6), 9243–9275 (2023). https://doi.org/10.1007/s11042-022-13644-y

    Article  Google Scholar 

  34. https://github.com/HaydenFaulkner/Tennis/tree/master/data

  35. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.48550/arXiv.1409.0575

    Article  MathSciNet  Google Scholar 

  36. Cai, J., Tang, X.: RGB video based tennis action recognition using a deep historical long short-term memory. arXiv (2018). https://doi.org/10.48550/arXiv.1808.00845

  37. Shen, X., Ding, Y.: Human skeleton representation for 3D action recognition based on complex network coding and LSTM. J. Vis. Commun. Image Represent. 82(103386), 1–9 (2022). https://doi.org/10.1016/j.jvcir.2021.103386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Choroś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choroś, K. (2024). Automatic Detection of Serve Actions in Tennis Videos. In: Nguyen, N.T., et al. Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2024. Communications in Computer and Information Science, vol 2145. Springer, Singapore. https://doi.org/10.1007/978-981-97-5934-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5934-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5933-0

  • Online ISBN: 978-981-97-5934-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics