Abstract
The repetitive analysis of similar scRNA-seq samples for cell identification is both time-consuming and labor-intensive. Transferring annotations from a reference to a query dataset offers innovative strategies for single-cell annotation, with deep learning’s prowess in feature extraction serving as a robust foundation for these approaches. In this paper, we present the Multi-level Feature Extractor-attention model (MLFE-Att), a deep learning framework that leverages the multi-head attention mechanism to learn intricate cellular correlation features, thereby enhancing the identification of cell categories with minor differences. Deeper and non-linear features of cells are learned by the module that contains multiple fully connected layers and activation layers. Experimental evaluations on the bone marrow scRNA-seq dataset demonstrate that MLFE-Att outperforms the other two baseline models, MLFE-CNN and MLFE-LSTM, with a 99.84% identification accuracy. The results on the new subset of the bone marrow dataset indicate that MLFE-Att offers dependable support for identifying cells in the new sample, achieving a 92.76% accuracy, and supplies insightful feedback for manual cellular labeling.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Data Availability Statement
The dataset used in this study is obtained from public data repository and downloaded from the GEO database under the accession number GSE145477.
References
Shapiro, E., Biezuner, T., Linnarsson, S.: Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14(9), 618–630 (2013)
Olsen, T.K., Baryawno, N.: Introduction to single-cell RNA sequencing. Curr. Protoc. Mol. Biol. 122(1), e57 (2018)
Lee, J., Kim, M., Kang, K., Yang, C.S., Yoon, S.: Hierarchical cell-type identifier accurately distinguishes immune-cell subtypes enabling precise profiling of tissue microenvironment with single-cell RNA-sequencing. Briefings Bioinform. 24(2), bbad006 (2023)
Inoue, K., et al.: Bone marrow adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. Elife 12, e82118 (2023)
Li, W.: Whole-embryo scRNA-seq of mouse development. Nat. Genet. 1 (2023)
Huang, D., et al.: Advances in single-cell RNA sequencing and its applications in cancer research. J. Hematol. Oncol. 16(1), 98 (2023)
Stuart, T., et al.: Comprehensive integration of single-cell data. Cell 177(7), 1888–1902 (2019)
Wolf, F.A., Angerer, P., Theis, F.J.: Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1–5 (2018)
Baker, D.N., Dyjack, N., Braverman, V., Hicks, S.C., Langmead, B.: Fast and memory-efficient scRNA-seq k-means clustering with various distances. In: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 1–8 (2021)
Traag, V.A., Waltman, L., Van Eck, N.J.: From louvain to leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 5233 (2019)
Tian, T., Wan, J., Song, Q., Wei, Z.: Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat. Mach. Intell. 1(4), 191–198 (2019)
Tran, B., Tran, D., Nguyen, H., Ro, S., Nguyen, T.: scCAN: single-cell clustering using autoencoder and network fusion. Sci. Rep. 12(1), 10267 (2022)
Wang, J., Xia, J., Wang, H., Su, Y., Zheng, C.H.: scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Briefings Bioinform. 24(1), bbac625 (2023)
Chen, J., Xu, H., Tao, W., Chen, Z., Zhao, Y., Han, J.D.J.: Transformer for one stop interpretable cell type annotation. Nat. Commun. 14(1), 223 (2023)
Erfanian, N., et al.: Deep learning applications in single-cell omics data analysis. bioRxiv (2021)
Ren, J., Li, H., Wang, A., Saho, K., Meng, L.: Radar-based gait analysis by transformer-liked network for dementia diagnosis. Biomed. Signal Process. Control 91, 105986 (2024)
Li, Z., Li, H., Meng, L.: Model compression for deep neural networks: a survey. Computers 12(3), 60 (2023)
Yue, X., Meng, L.: YOLO-MSA: a multi-scale stereoscopic attention network for empty-dish recycling robots. IEEE Trans. Instrum. Meas. (2023)
Ge, Y., Li, Z., Yue, X., Li, H., Li, Q., Meng, L.: IoT-based automatic deep learning model generation and the application on empty-dish recycling robots. Internet Things 25, 101047 (2024)
Li, H., Meng, L.: Hardware-aware approach to deep neural network optimization. Neurocomputing 559, 126808 (2023)
Yan, H., Zhang, H., Shi, J., Ma, J., Xu, X.: Inspiration transfer for intelligent design: a generative adversarial network with fashion attributes disentanglement. IEEE Trans. Consum. Electron. 69(4), 1152–1163 (2023)
Li, X., et al.: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 11(1), 2338 (2020)
Fan, X., et al.: Single-cell transcriptome analysis reveals cell lineage specification in temporal-spatial patterns in human cortical development. Sci. Adv. 6(34), eaaz2978 (2020)
Zhou, T., et al.: Spatiotemporal characterization of human early intervertebral disc formation at single-cell resolution. Adv. Sci. 10(14), 2206296 (2023)
Wang, Y., Cang, S., Yu, H.: A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst. Appl. 137, 167–190 (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Zhong, L., et al.: Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife 9, e54695 (2020)
Korsunsky, I., et al.: Fast, sensitive and accurate integration of single-cell data with harmony. Nat. Methods 16(12), 1289–1296 (2019)
Hu, C., et al.: Cellmarker 2.0: an updated database of manually curated cell markers in human/mouse and web tools based on SCRNA-seq data. Nucleic Acids Res. 51(D1), D870–D876 (2023)
Franzén, O., Gan, L.M., Björkegren, J.L.: Panglaodb: a web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, baz046 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, X., Li, Z., Han, J., Xu, R., Meng, L. (2025). A Deep Learning-Based Method Facilitates scRNA-seq Cell Type Identification. In: Zhang, H., Li, X., Hao, T., Meng, W., Wu, Z., He, Q. (eds) Neural Computing for Advanced Applications. NCAA 2024. Communications in Computer and Information Science, vol 2181. Springer, Singapore. https://doi.org/10.1007/978-981-97-7001-4_13
Download citation
DOI: https://doi.org/10.1007/978-981-97-7001-4_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-7000-7
Online ISBN: 978-981-97-7001-4
eBook Packages: Artificial Intelligence (R0)