Skip to main content

Radical Basis Neural Network Based Anti-swing Control for 5-DOF Ship-Mounted Crane

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2024)

Abstract

The autonomous anti-sway control of the ship-mounted crane systems is a tough issue due to the under-actuated characteristic, strong coupling and base excitation. Furthermore, the ship-mounted crane systems are also suffering from unknown dynamics and frictions etc. In some conditions, the ship-mounted cranes may exhibit spherical pendulum effects. These factors make the control problem even more challenging. To solve the above problems, this paper designed a Radical Basis Function Neural Network (RBFNN) based feedback control method for a 5-DOF ship-mounted rotary crane. Specially, the adaptive RBFNN is established to approximate the unknown dynamics online. After that, eschewing any simplification of the dynamic model, a feedback anti-sway control is designed to ensure the cargo could reach to desired position and dampening the payload spherical swing simultaneously. The closed-loop stability is analyzed and the effectiveness of the control method is validated via simulation experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sørensen, A.J.: Structural issues in the design and operation of marine control systems. Annu. Rev. Control. 29(1), 125–149 (2005)

    Article  Google Scholar 

  2. Chilinski, B., Mackojc, A., Zalewski, R., Mackojc, K.: Proposal of the 3-DOF model as an approach to modelling offshore lifting dynamics. Ocean Eng. 203, 107235 (2020)

    Article  Google Scholar 

  3. Ramli, L., Mohamed, Z., Abdullahi, A.M., Jaafar, H.I., Lazim, I.M.: Control strategies for crane systems: a comprehensive review. Mech. Syst. Sig. Process. 95, 1–23 (2017)

    Article  ADS  Google Scholar 

  4. Zhu, S., Tan, Z., Yang, Z., Cai, L.: Quay crane and yard truck dual-cycle scheduling with mixed storage strategy. Adv. Eng. Inform. 54, 101722 (2022)

    Article  Google Scholar 

  5. Verma, A.S., Vedvik, N.P., Gao, Z.: A comprehensive numerical investigation of the impact behaviour of an offshore wind turbine blade due to impact loads during installation. Ocean Eng. 172, 127–145 (2019)

    Article  ADS  Google Scholar 

  6. Cao, Y., Li, T.: Review of antiswing control of shipboard cranes. IEEE/CAA J. Automatica Sinica 7(2), 346–354 (2020)

    Article  Google Scholar 

  7. Ham, S.-H., Roh, M.-I., Lee, H., Ha, S.: Multibody dynamic analysis of a heavy load suspended by a floating crane with constraint-based wire rope. Ocean Eng. 109, 145–160 (2015)

    Article  ADS  Google Scholar 

  8. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Industr. Electron. 61(1), 414–427 (2014)

    Article  Google Scholar 

  9. Lu, B., Fang, Y., Sun, N., Wang, X.: Antiswing control of offshore boom cranes with ship roll disturbances. IEEE Trans. Control Syst. Technol. 26(2), 740–747 (2018)

    Article  Google Scholar 

  10. Sun, N., Fang, Y., Chen, H., Fu, Y., Lu, B.: Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1781–1793 (2018)

    Article  Google Scholar 

  11. Zhang, R., Chen, H.: An adaptive tracking control method for offshore cranes with unknown gravity parameters. Ocean Eng. 260, 111809 (2022)

    Article  Google Scholar 

  12. Qian, Y.Z., Fang, Y.C., Lu, B.: Adaptive robust tracking control for an offshore ship-mounted crane subject to unmatched sea wave disturbances. Mech. Syst. Sig. Process. 114, 556–570 (2019)

    Article  ADS  Google Scholar 

  13. Qian, Y., Fang, Y., Lu, B.: Adaptive repetitive learning control for an offshore boom crane. Automatica 82, 21–28 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ngo, Q.H., Hong, K.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)

    Article  Google Scholar 

  15. Kim, G.-H.: Continuous integral sliding mode control of an offshore container crane with input saturation. Int. J. Control Autom. Syst. 18(9), 2326–2336 (2020)

    Article  Google Scholar 

  16. Tuan, L.A., Cuong, H.M., Trieu, P.V., Nho, L.C., Thuan, V.D., Anh, L.V.: Adaptive neural network sliding mode control of shipboard container cranes considering actuator backlash. Mech. Syst. Sig. Process. 112, 233–250 (2018)

    Article  ADS  Google Scholar 

  17. Yang, T., Sun, N., Chen, H., Fang, Y.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 901–914 (2019)

    Article  MathSciNet  PubMed  Google Scholar 

  18. Qian, Y., Fang, Y.: Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: a disturbance observer-based approach. IEEE Trans. Autom. Sci. Eng. 16(3), 1125–1136 (2019)

    Article  Google Scholar 

  19. Chen, H., Sun, N.: An output feedback approach for regulation of 5-DOF offshore cranes with ship yaw and roll perturbations. IEEE Trans. Ind. Electron. 69(2), 1705–1716 (2022)

    Article  Google Scholar 

  20. Lu, B., Lin, J., Fang, Y., Hao, Y., Cao, H.: Online trajectory planning for three-dimensional offshore boom cranes. Autom. Constr. 140, 104372 (2022)

    Article  Google Scholar 

  21. Ngo, Q.H., Nguyen, N.P., Nguyen, C.N., Tran, T.H., Bui, V.H.: Payload pendulation and position control systems for an offshore container crane with adaptive-gain sliding mode control. Asian J. Control 22(5), 2119–2128 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported the National Natural Science Foundation of China under Grant 62103233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Chuanjing, H., Liu, C. (2025). Radical Basis Neural Network Based Anti-swing Control for 5-DOF Ship-Mounted Crane. In: Zhang, H., Li, X., Hao, T., Meng, W., Wu, Z., He, Q. (eds) Neural Computing for Advanced Applications. NCAA 2024. Communications in Computer and Information Science, vol 2181. Springer, Singapore. https://doi.org/10.1007/978-981-97-7001-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7001-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7000-7

  • Online ISBN: 978-981-97-7001-4

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics