Skip to main content

WS-GCA: A Synergistic Framework for Precise Semantic Segmentation with Comprehensive Supervision

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Semantic segmentation is a fundamental task in computer vision that entails classifying each pixel of an image into predefined categories. Despite significant advancements in deep learning, obtaining accurately labeled datasets remains a costly and labor-intensive process. This research aims to mitigate the need for extensive, precise tags by exploring Weakly Supervised Semantic Segmentation (WSSS), which seeks to achieve accurate pixel-level classification with minimal supervision. We introduce WS-GCA, a novel unified framework that synergistically combines the Gaussian Mixture Model (GMM), Label Cohesion Loss (LC Loss), and self-attention mechanism to enhance segmentation quality. The WS-GCA framework models the distribution of weak labels using a mixed Gaussian distribution, amalgamates global and local feature information to substantially boost model prediction accuracy, incorporates LC Loss to improve spatial consistency in segmentation, and employs a self-attention mechanism to enhance feature extraction efficiency. Experimental results on the Pascal and Cityscapes datasets demonstrate the WS-GCA framework’s ability to generate superior segmentation results from initially weak labels. The proposed framework increases the mean Intersection over Union (mIoU) by 2.2% compared to baseline models, significantly reducing category mispredictions and advancing the state of the art in the segmentation of large-area objects with minimal supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, J., Cho, S., Kwak, S.: Weakly supervised learning of instance segmentation with inter-pixel relations. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2209–2218 (2019)

    Google Scholar 

  2. Chan, L., Hosseini, M.S., Plataniotis, K.N.: A comprehensive analysis of weakly-supervised semantic segmentation in different image domains. Int. J. Comput. Vision 129(2), 361–384 (2021)

    Article  Google Scholar 

  3. Chen, H., et al.: Seminar learning for click-level weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6920–6929 (2021)

    Google Scholar 

  4. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  6. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88, 303–338 (2010)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, Z., Zhang, S., Cheng, D., Liang, R., Jiang, M.: Multi-branch residual fusion network for imbalanced visual regression. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, pp. 392–406. Springer (2023). https://doi.org/10.1007/978-981-97-2303-4_26

  9. Ke, T.W., Hwang, J.J., Yu, S.X.: Universal weakly supervised segmentation by pixel-to-segment contrastive learning (2021). arXiv preprint arXiv:2105.00957

  10. Lee, J., Choi, J., Mok, J., Yoon, S.: Reducing information bottleneck for weakly supervised semantic segmentation. Adv. Neural. Inf. Process. Syst. 34, 27408–27421 (2021)

    Google Scholar 

  11. Lee, J., Kim, E., Lee, S., Lee, J., Yoon, S.: Ficklenet: weakly and semi-supervised semantic image segmentation using stochastic inference. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5267–5276 (2019)

    Google Scholar 

  12. Liang, R., Zhang, S., Zhang, W., Zhang, G., Tang, J.: Nonlocal hybrid network for long-tailed image classification. ACM Trans. Multimed. Comput. Commun. Appl. 20(4), 1–22 (2024)

    Article  Google Scholar 

  13. Liang, Z., Wang, T., Zhang, X., Sun, J., Shen, J.: Tree energy loss: towards sparsely annotated semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 16907–16916 (2022)

    Google Scholar 

  14. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: Scribblesup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3159–3167 (2016)

    Google Scholar 

  15. Lu, G., Li, J., Wei, J.: Aspect sentiment analysis with heterogeneous graph neural networks. Inf. Proc. Manage. 59(4), 102953 (2022)

    Article  Google Scholar 

  16. Marin, D., Tang, M., Ayed, I.B., Boykov, Y.: Beyond gradient descent for regularized segmentation losses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10187–10196 (2019)

    Google Scholar 

  17. Ople, J.J.M., Yeh, P.Y., Sun, S.W., Tsai, I.T., Hua, K.L.: Multi-scale neural network with dilated convolutions for image deblurring. IEEE Access 8, 53942–53952 (2020)

    Article  Google Scholar 

  18. Pan, Z., Jiang, P., Wang, Y., Tu, C., Cohn, A.G.: Scribble-supervised semantic segmentation by uncertainty reduction on neural representation and self-supervision on neural eigenspace. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7416–7425 (2021)

    Google Scholar 

  19. Redondo-Cabrera, C., Baptista-Rios, M., López-Sastre, R.J.: Learning to exploit the prior network knowledge for weakly supervised semantic segmentation. IEEE Trans. Image Process. 28(7), 3649–3661 (2019)

    Article  MathSciNet  Google Scholar 

  20. Ru, L., Zheng, H., Zhan, Y., Du, B.: Token contrast for weakly-supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3093–3102 (2023)

    Google Scholar 

  21. Subhashdas, S.K., Choi, B.S., Yoo, J.H., Ha, Y.H.: Color image enhancement based on particle swarm optimization with gaussian mixture. In: Color imaging XX: Displaying, processing, hardcopy, and applications, vol. 9395, pp. 66–76. SPIE (2015)

    Google Scholar 

  22. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised cnn segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1818–1827 (2018)

    Google Scholar 

  23. Tang, M., Perazzi, F., Djelouah, A., Ben Ayed, I., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised cnn segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 507–522 (2018)

    Google Scholar 

  24. Vernaza, P., Chandraker, M.: Learning random-walk label propagation for weakly-supervised semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7158–7166 (2017)

    Google Scholar 

  25. Wang, B., et al.: Boundary perception guidance: a scribble-supervised semantic segmentation approach. In: IJCAI International joint conference on artificial intelligence (2019)

    Google Scholar 

  26. Wang, W., Sun, G., Van Gool, L.: Looking beyond single images for weakly supervised semantic segmentation learning. IEEE Trans. Pattern Anal. Mach. Intell. 46(3), 1635–1649 (2022)

    Article  Google Scholar 

  27. Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12275–12284 (2020)

    Google Scholar 

  28. Wu, L., Fang, L., Yue, J., Zhang, B., Ghamisi, P., He, M.: Deep bilateral filtering network for point-supervised semantic segmentation in remote sensing images. IEEE Trans. Image Process. 31, 7419–7434 (2022)

    Article  Google Scholar 

  29. Wu, L., et al.: Sparsely annotated semantic segmentation with adaptive gaussian mixtures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15454–15464 (2023)

    Google Scholar 

  30. Xu, J., et al.: Scribble-supervised semantic segmentation inference. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15354–15363 (2021)

    Google Scholar 

  31. Xu, R., Wang, C., Sun, J., Xu, S., Meng, W., Zhang, X.: Self correspondence distillation for end-to-end weakly-supervised semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3045–3053 (2023)

    Google Scholar 

  32. Yi, R., Zeng, R., Weng, Y., Yu, M., Lai, Y.K., Liu, Y.J.: Lesion region segmentation via weakly supervised learning. Quant. Biol. 10(3), 239–252 (2022)

    Article  Google Scholar 

  33. Zhang, B., Xiao, J., Jiao, J., Wei, Y., Zhao, Y.: Affinity attention graph neural network for weakly supervised semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 8082–8096 (2021)

    Article  Google Scholar 

  34. Zhang, B., Xiao, J., Wei, Y., Zhao, Y.: Credible dual-expert learning for weakly supervised semantic segmentation. Int. J. Comput. Vision 131(8), 1892–1908 (2023)

    Article  Google Scholar 

  35. Zhang, G., Zhang, S., Yuan, G.: Bayesian graph local extrema convolution with long-tail strategy for misinformation detection. ACM Trans. Knowl. Discov. Data 18(4), 1–21 (2024)

    Google Scholar 

  36. Zhou, H., Song, K., Zhang, X., Gui, W., Qian, Q.: Wails: Watershed algorithm with image-level supervision for weakly supervised semantic segmentation. IEEE Access 7, 42745–42756 (2019)

    Article  Google Scholar 

  37. Zong, B., et al.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International conference on learning representations (2018)

    Google Scholar 

  38. Zu, X., Yu, H., Li, B., Xue, X.: Weakly-supervised text instance segmentation. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1915–1923 (2023)

    Google Scholar 

Download references

Acknowledgment

The work was supported partly by the Project of Guangxi Science and Technology(No. GuiKeAB23026040), Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin, China, Intelligent Processing and the Research Fund of Guangxi Key Lab of Multi-source Information Mining & Security (Nos. 20-A-01-01, MIMS21-M01 and MIMS24-02), the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and the Guangxi “Bagui” Teams for Innovation and Research, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shichao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Zhang, W., Song, J., Chen, B., Hu, Y., Zhang, S. (2024). WS-GCA: A Synergistic Framework for Precise Semantic Segmentation with Comprehensive Supervision. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14961. Springer, Singapore. https://doi.org/10.1007/978-981-97-7232-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7232-2_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7231-5

  • Online ISBN: 978-981-97-7232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics