Skip to main content

YOLO-VanNet: An Improved YOLOv5 Method for PCB Surface Defect Detection

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Printed Circuit Board (PCB) surface defect detection is a crucial part of the PCB production and manufacturing process, which is vital in the manufacturing of electronic devices, and it is a challenging task to realize efficient and accurate PCB detection. In this paper, we propose an improved PCB surface defect detection algorithm YOLO-VanNet based on YOLOv5, whose network structure mainly includes: using K-Means++ to improve the original K-Means algorithm to generate anchors more in line with the labeling information; Scale the anchors within a certain range by the labeling information of the dataset to make them more suitable for the current dataset and speed up the training speed of the model; Using VanillaNet to replace the original backbone network in the backbone network to strengthen the performance of the network, reduce the number of layers of the network while reducing the redundant computation, reduce the requirements of the model on the hardware resources, and achieve a more efficient feature extraction. Extensive experiments on the PKU-Market-PCB dataset show that the YOLO-VanNet model achieves 90.6% mAP (Mean Average Precision) and 95.1% precision, which provides faster training speed and better detection performance compared to the YOLOv5 model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  3. Chen, H., Wang, Y., Guo, J., Tao, D.: Vanillanet: the power of minimalism in deep learning. arXiv preprint arXiv:2305.12972 (2023)

  4. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  5. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1580–1589 (2020)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  8. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  10. Lan, Z., Hong, Y., Li, Y.: An improved yolov3 method for PCB surface defect detection. In: 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), pp. 1009–1015. IEEE (2021)

    Google Scholar 

  11. Liao, X., Lv, S., Li, D., Luo, Y., Zhu, Z., Jiang, C.: Yolov4-mn3 for PCB surface defect detection. Appl. Sci. 11(24), 11701 (2021)

    Article  Google Scholar 

  12. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  14. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

    Google Scholar 

  15. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  19. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  20. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  21. Wu, L., Zhang, L., Zhou, Q.: Printed circuit board quality detection method integrating lightweight network and dual attention mechanism. IEEE Access 10, 87617–87629 (2022)

    Article  Google Scholar 

  22. Zhang, Y., Xie, F., Huang, L., Shi, J., Yang, J., Li, Z.: A lightweight one-stage defect detection network for small object based on dual attention mechanism and pafpn. Front. Phys. 9, 708097 (2021)

    Article  Google Scholar 

  23. Zhong, Z., Xia, Y., Zhou, D., Yan, Y.: Lightweight object detection algorithm based on improved yolov4. J. Comput. Appl. 42(7), 2201 (2022)

    Google Scholar 

  24. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, F., Shi, C., Zhu, D., Zhou, C. (2024). YOLO-VanNet: An Improved YOLOv5 Method for PCB Surface Defect Detection. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14961. Springer, Singapore. https://doi.org/10.1007/978-981-97-7232-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7232-2_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7231-5

  • Online ISBN: 978-981-97-7232-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics