Skip to main content

Type-Based Neighborhood Aggregation for Knowledge Graph Alignment

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Entity alignment (EA) is a critical step in integrating multiple knowledge graphs (KGs), which aims at identifying entities referring to the same real-world object from different KGs. The majority of existing embedding-based methods usually enhance the contextual representation of entities by performing neighborhood aggregation to support more accurate entity alignment. However, the vanilla aggregation process simply considers each neighbor to be equally important without distinguishing the difference between neighbors, which is much limited. To address the problem, we propose TNAEA, a Type-based Neighborhood Aggregation for Entity Alignment. The core idea of TNAEA is to introduce a selective neighborhood aggregation mechanism to enhance entity representation by classifying neighbors from different angles. Specifically, we classify each neighbor node for each central entity from three different perspectives, namely semantic similarity, spatiality and topological structure, and add corresponding type information to distinguish each other. Then, we incorporate the type information into the neighborhood aggregation process and hence better represent each central entity. Extensive experiments are conducted to study TNAEA across three real-world cross-lingual datasets, revealing that our method outperforms existing methods in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  2. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. arXiv preprint arXiv:1611.03954 (2016)

  3. d’Amato, C., Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.): ISWC 2017. LNCS, vol. 10587. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4

    Book  Google Scholar 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Ding, Q., Zhang, D., Yin, J.: Conflict-aware pseudo labeling via optimal transport for entity alignment. In: 2022 IEEE International Conference on Data Mining (ICDM), pp. 915–920. IEEE (2022)

    Google Scholar 

  6. Han, J., Cheng, B., Wang, X.: Open domain question answering based on text enhanced knowledge graph with hyperedge infusion. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 1475–1481 (2020)

    Google Scholar 

  7. Huang, H., et al.: Cross-knowledge-graph entity alignment via relation prediction. Knowl.-Based Syst. 240, 107813 (2022)

    Article  Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Lin, X., Song, W., Luo, H., et al.: Echoea: echo information between entities and relations for entity alignment. arXiv preprint arXiv:2107.03054 (2021)

  10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  11. Liu, W., et al.: K-bert: enabling language representation with knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2901–2908 (2020)

    Google Scholar 

  12. Mao, X., Wang, W., Xu, H., Lan, M., Wu, Y.: Mraea: an efficient and robust entity alignment approach for cross-lingual knowledge graph. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 420–428 (2020)

    Google Scholar 

  13. Mao, X., Wang, W., Xu, H., Wu, Y., Lan, M.: Relational reflection entity alignment. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1095–1104 (2020)

    Google Scholar 

  14. Qi, D., Chen, S., Sun, X., Luan, R., Tong, D.: A multiscale convolutional gragh network using only structural information for entity alignment. Appl. Intell. 53(7), 7455–7465 (2023)

    Article  Google Scholar 

  15. Raunak, V., Gupta, V., Metze, F.: Effective dimensionality reduction for word embeddings. In: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pp. 235–243 (2019)

    Google Scholar 

  16. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  17. Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint attribute-preserving embedding. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 628–644. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_37

    Chapter  Google Scholar 

  18. Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment with knowledge graph embedding. In: IJCAI, vol. 18 (2018)

    Google Scholar 

  19. Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: TransEdge: translating relation-contextualized embeddings for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 612–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_35

    Chapter  Google Scholar 

  20. Sun, Z., et al.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 222–229 (2020)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  22. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 349–357 (2018)

    Google Scholar 

  23. Wu, Y., Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-aware entity alignment for heterogeneous knowledge graphs. arXiv preprint arXiv:1908.08210 (2019)

  24. Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Jointly learning entity and relation representations for entity alignment. arXiv preprint arXiv:1909.09317 (2019)

  25. Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Neighborhood matching network for entity alignment. arXiv preprint arXiv:2005.05607 (2020)

  26. Xian, Y., Fu, Z., Huang, Q., Muthukrishnan, S., Zhang, Y.: Neural-symbolic reasoning over knowledge graph for multi-stage explainable recommendation. arXiv preprint arXiv:2007.13207 (2020)

  27. Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: Neighborhood-aware attentional representation for multilingual knowledge graphs. In: IJCAI, pp. 1943–1949 (2019)

    Google Scholar 

  28. Zhu, R., Ma, M., Wang, P.: RAGA: relation-aware graph attention networks for global entity alignment. In: Karlapalem, K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 501–513. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_40

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the“14th Five-Year Plan” Civil Aerospace Pre-Research Project of China under Grant No. D020101, the Natural Science Foundation of China No. 62302213, Innovation Funding of Key Laboratory of Intelligent Decision and Digital Operations No. NJ2023027, Ministry of Industrial and Information Technology Project of Hebei Key Laboratory of Software Engineering, No. 22567637H, the Natural Science Foundation of Jiangsu Province under Grant No. BK20210280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Y., Li, B., Qian, Z., Yin, H. (2024). Type-Based Neighborhood Aggregation for Knowledge Graph Alignment. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14962. Springer, Singapore. https://doi.org/10.1007/978-981-97-7235-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7235-3_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7234-6

  • Online ISBN: 978-981-97-7235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics