Skip to main content

Meeting Pattern Detection from Trajectories in Road Network

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

As technological advancements in positioning devices progress, the analysis of spatio-temporal trajectory data has become increasingly critical, particularly in identifying the group movement pattern of moving objects. However, existing studies on group convergence behavior in urban networks require absolute temporal continuity, which may lead to the loss of interesting patterns. To overcome this challenge, we introduce a new pattern, the meeting pattern, which relaxes the time constraints on the convergence behavior. To effectively detect meeting patterns, we design and implement two algorithms, the tree structure-based MT-MPM algorithm and the ID partition-based IDP-MPM algorithm. Extensive experiments conducted on three datasets not only validate the time characteristics of the meeting pattern, but also confirm the effectiveness and efficiency of MT-MPM and IDP-MPM algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/.

  2. 2.

    http://shanghai.sodachallenges.com/data.html.

  3. 3.

    https://iapg.jade-hs.de/personen/brinkhoff/generator.

References

  1. Zhu, P., Wang, K., Tan, X.: How is commute mode choice related to built environment in a high-density urban context? Cities 134, 104180 (2023)

    Article  Google Scholar 

  2. Han, E., et al.: A comprehensive characterizations of zebrafish rheotactic behaviors and its application to otoprotective drug screening. Expert Sys. Appl. 237, 121496 (2024)

    Article  Google Scholar 

  3. Zhang, P., Zheng, J., Lin, H., Liu, C., Zhao, Z., Li, C.: Vehicle trajectory data mining for artificial intelligence and real-time traffic information extraction. IEEE Trans. Intell. Transp. Syst.Intell. Transp. Syst. 24(11), 13088–13098 (2023)

    Article  Google Scholar 

  4. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: Proc. ACM SIGKDD, 2011, pp. 316–324 (2011)

    Google Scholar 

  5. Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: Proceedings of the ACM SIGSPATIAL/GIS, 2010, pp. 99–108 (2010)

    Google Scholar 

  6. Fan, Q., Zhang, D., Wu, H., Tan, K.L.: A general and parallel platform for mining co-movement patterns over large-scale trajectories. Proc. VLDB Endow 10(4), 313–324 (2016)

    Article  Google Scholar 

  7. Zhao, B., Liu, X., Jia, J., Ji, G., Tan, S., Yu, Z.: A framework for group converging pattern mining using spatiotemporal trajectories. GeoInformatica 24(4), 745–776 (2020)

    Article  Google Scholar 

  8. Jia, J., Hu, Y., Zhao, B., Ji, G., Liu, R.: Discovering collective converging groups of large scale moving objects in road networks. In: Proceedings of the DASFAA, 2021, pp. 307–324 (2021). https://doi.org/10.1007/978-3-030-73197-7_21

  9. Gudmundsson, J., Van Kreveld K.: Computing longest duration flocks in trajectory data. In: Proceedings of the ACM SIGSPATIAL/GIS, 2006, pp. 35–42 (2006)

    Google Scholar 

  10. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. arXiv preprint arXiv:1002.0963 (2010)

  11. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object clusters. Proc. VLDB Endow 3(1–2), 723–734 (2010)

    Article  Google Scholar 

  12. Li, X., Ceikute, V., Jensen, C.S., Tan, K.L.: Effective online group discovery in trajectory databases. IEEE Trans. Knowl. Data Eng.Knowl. Data Eng. 25(12), 2752–2766 (2012)

    Article  Google Scholar 

  13. Li, Y., Bailey, J., Kulik, L.: Efficient mining of platoon patterns in trajectory databases. Data Knowl. Eng.Knowl. Eng. 100, 167–187 (2015)

    Article  Google Scholar 

  14. Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.: Real-time distributed co-movement pattern detection on streaming trajectories. Proc. VLDB Endow 12(10), 1208–1220 (2019)

    Article  Google Scholar 

  15. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.: Scan: a structural clustering algorithm for net-works. In: Proceedings of the ACM SIGKDD, 2007, pp. 824–833

    Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (62306266, 62276227, 62266050), the Program of Yunnan Key Laboratory of Intelligent Systems and Computing (202405AV340009), the Program for Young and Middle-aged Academic and Technical Reserve Leaders of Yunnan Province (202205AC160033) and the Postgraduate Research and Innovation Foundation of Yunnan University (TM-23236919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peizhong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, W., Yang, P., Wang, L., Chen, H. (2024). Meeting Pattern Detection from Trajectories in Road Network. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14962. Springer, Singapore. https://doi.org/10.1007/978-981-97-7235-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7235-3_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7234-6

  • Online ISBN: 978-981-97-7235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics