Skip to main content

Deep Sarcasm Detection with Sememe and Syntax Knowledge

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Sarcasm detection is a challenging task in sentiment computing since sarcasm belongs to a prevalent and sophisticated linguistic phenomenon. Detecting sarcastic sentiment in utterances can avoid misunderstanding the true intentions of speakers and promote the development of natural language processing. However, existing approaches make effort to design complex model structures, ignoring that knowledge is also crucial for sarcasm recognition. In this paper, we propose a novel Sememe and Syntax Knowledge enhanced Sarcasm Detection (SSK-SD) integrating linguistic knowledge (i.e., sememe knowledge and syntax knowledge), where semantic knowledge captures the potential contradictory emotions between words. In contrast, syntactic knowledge enhances the latent semantic representation of the sentences. Experimental results on two benchmark datasets (i.e., Headlines and SARC) demonstrate that SSK-SD significantly improves the state-of-the-art methods on the Sarcasm Detection task, further indicating that knowledge can enhance Sarcasm Detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Definition by Oxford English Dictionary at https://www.oxfordlearnersdictionaries.com/.

  2. 2.

    We do not distinguish between sarcastic and ironic sentences for convenience.

  3. 3.

    https://openhownet.thunlp.org/.

  4. 4.

    https://github.com/rishabhmisra/Sarcasm-Detection-using-NN.

  5. 5.

    https://nlp.cs.princeton.edu/SARC/.

References

  1. Akula, R., Garibay, I.: Interpretable multi-head self-attention architecture for sarcasm detection in social media (2021)

    Google Scholar 

  2. Amir, S., Wallace, B.C., Lyu, H., Carvalho, P., Silva, M.J.: Modelling context with user embeddings for sarcasm detection in social media (2016)

    Google Scholar 

  3. Babanejad, N., Davoudi, H., An, A., Papagelis, M.: Affective and contextual embedding for sarcasm detection. In: Proceedings of the 28th International Conference on Computational Linguistics (COLING’ 2020) (2020)

    Google Scholar 

  4. Bai, J., Wang, Y., Chen, Y., Yang, Y., Tong, Y.: Syntax-BERT: improving pre-trained transformers with syntax trees (2021)

    Google Scholar 

  5. Barbieri, F., Ronzano, F., Sagigon, H.: Italian irony detection in twitter: a first approach. In: First Italian Conference on Computational Linguistics (2014)

    Google Scholar 

  6. Barbieri, F., Saggion, H.: Modelling irony in Twitter. In: Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter of the Association for Computational Linguistics (2014)

    Google Scholar 

  7. Barbieri, F., Saggion, H., Ronzano, F.: Modelling sarcasm in Twitter, a novel approach. In: Meeting of the Association for Computational Linguistics (2014)

    Google Scholar 

  8. Bastings, J., Titov, I., Aziz, W., Marcheggiani, D., Simaan, K.: Graph convolutional encoders for syntax-aware neural machine translation (2017)

    Google Scholar 

  9. Bharti, S.K., Babu, K.S., Jena, S.K.: Parsing-based sarcasm sentiment recognition in Twitter data. In: IEEE/ACM International Conference on Advances in Social Networks Analysis Mining, pp. 1373–1380 (2015)

    Google Scholar 

  10. Bloomfield, L.: A set of postulates for the science of language. Language (1926)

    Google Scholar 

  11. Katza, J.D.C.A.N.: Are there necessary conditions for inducing a sense of sarcastic irony? Discourse Process. 49(6), 459–480 (2012)

    Article  Google Scholar 

  12. Chia, Z.L., Ptaszynski, M., Masui, F., Leliwa, G., Wroczynski, M.: Machine learning and feature engineering-based study into sarcasm and irony classification with application to cyberbullying detection. Inf. Process. Manag. Libr. Inf. Retrieval Syst. Commun. Netw. Int. J. (4), 58 (2021)

    Google Scholar 

  13. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, 6–12 July 2002, Philadelphia, PA, USA (2002)

    Google Scholar 

  14. Davidov, D., Tsur, O., Rappoport, A.: Semi-supervised recognition of sarcasm in twitter and Amazon. In: CONLL (2010)

    Google Scholar 

  15. Dong, Z., Dong, Q.: Hownet - a hybrid language and knowledge resource. In: International Conference on Natural Language Processing and Knowledge Engineering (2003)

    Google Scholar 

  16. Dong, Z., Dong, Q., Hao, C.: Hownet and its computation of meaning. Assoc. Comput. Linguist. (2010)

    Google Scholar 

  17. Dong, Z., Dong, Q.: HowNet and The Computation of Meaning (2006)

    Google Scholar 

  18. Duan, S., Zhao, H., Zhou, J., Wang, R.: Syntax-aware transformer encoder for neural machine translation. In: 2019 International Conference on Asian Language Processing (IALP) (2019)

    Google Scholar 

  19. Duan, X., Zhao, J., Xu, B.: Word sense disambiguation through sememe labeling. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence. IJCAI 2007, 6–12 January 2007, Hyderabad, India (2007)

    Google Scholar 

  20. Ghosh, A., Veale, T.: Fracking sarcasm using neural network. In: 7th Workshop on Computational Approaches to Subjectivity, Sentiment Social Media Analysis (2016)

    Google Scholar 

  21. Ghosh, A., Veale, T.: Magnets for sarcasm: making sarcasm detection timely, contextual and very personal. In: Empirical Methods in Natural Language Processing 2017 (2017)

    Google Scholar 

  22. Gu, Y., Yan, J., Zhu, H., Liu, Z.: Language modeling with sparse product of sememe experts (2018)

    Google Scholar 

  23. Hazarika, D., Poria, S., Gorantla, S., Cambria, E., Zimmermann, R., Mihalcea, R.: Cascade: contextual sarcasm detection in online discussion forums (2018)

    Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  25. Ili, S., Marrese-Taylor, E., Balazs, J.A., Matsuo, Y.: Deep contextualized word representations for detecting sarcasm and irony (2018)

    Google Scholar 

  26. Joshi, A., Patel, K., Tripathi, V., Bhattacharyya, P., Carman, M.: Are word embedding-based features useful for sarcasm detection?’ (2016)

    Google Scholar 

  27. Khodak, M., Saunshi, N., Vodrahalli, K.: A large self-annotated corpus for sarcasm (2017)

    Google Scholar 

  28. Kim, Y.: Convolutional neural networks for sentence classification. ePrint arXiv (2014)

    Google Scholar 

  29. Kiperwasser, E., Ballesteros, M.: Scheduled multi-task learning: from syntax to translation. Trans. Assoc. Comput. Linguist. 6(2) (2018)

    Google Scholar 

  30. Liu, L., Priestley, J.L., Zhou, Y., Ray, H.E., Han, M.: A2Text-net: a novel deep neural network for sarcasm detection. In: The 2019 IEEE International Conference on Cognitive Machine Intelligence (2019)

    Google Scholar 

  31. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)

    Article  Google Scholar 

  32. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Mcclosky, D.: The Stanford coreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (2014)

    Google Scholar 

  33. Marcheggiani, D., Titov, I.: Encoding sentences with graph convolutional networks for semantic role labeling (2017)

    Google Scholar 

  34. Maynard, D.G., Greenwood, M.A.: Who cares about sarcastic tweets? Investigating the impact of sarcasm on sentiment analysis. In: Language Resources and Evaluation Conference (LREC) (2014)

    Google Scholar 

  35. Misra, R., Arora, P.: Sarcasm detection using hybrid neural network (2019)

    Google Scholar 

  36. Niu, Y., Xie, R., Liu, Z., Sun, M.: Improved word representation learning with sememes (2017)

    Google Scholar 

  37. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation (2014)

    Google Scholar 

  38. Qi, F., et al.: Modeling semantic compositionality with sememe knowledge (2019)

    Google Scholar 

  39. Fanchao, Q.I., Xie, R., Zang, Y., Liu, Z., Sun, M.: Sememe knowledge computation: a review of recent advances in application and expansion of sememe knowledge bases (2021)

    Google Scholar 

  40. Qi, F., Yang, C., Liu, Z., Dong, Q., Dong, Z.: Openhownet: an open sememe-based lexical knowledge base (2019)

    Google Scholar 

  41. Qin, S., Rong, W., Shi, L., Yang, J., Xiong, Z.: Syntax tree aware adversarial question rewriting for answer selection. In: 2019 International Joint Conference on Neural Networks (IJCNN) (2019)

    Google Scholar 

  42. Qin, Y., Qi, F., Ouyang, S., Liu, Z., Sun, M.: Improving sequence modeling ability of recurrent neural networks via sememes. IEEE/ACM Trans. Audio Speech Lang. Process. 1 (2020)

    Google Scholar 

  43. Ren, L., Xu, B., Lin, H., Liu, X., Yang, L.: Sarcasm detection with sentiment semantics enhanced multi-level memory network. Neurocomputing 401 (2020)

    Google Scholar 

  44. Rosso, R.P.: Making objective decisions from subjective data: detecting irony in customer reviews. Decis. Support Syst. (2012)

    Google Scholar 

  45. Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)

    Article  Google Scholar 

  46. Antonio, R., Paolo, R., Tony, V.: A multidimensional approach for detecting irony in Twitter. Lang. Resourc. Eval. (2013)

    Google Scholar 

  47. Riloff, E., Qadir, A., Surve, P., Silva, L.D., Gilbert, N., Huang, R.: Sarcasm as contrast between a positive sentiment and negative situation (2013)

    Google Scholar 

  48. Roth, M., Lapata, M.: Neural semantic role labeling with dependency path embeddings (2016)

    Google Scholar 

  49. Sachan, D.S., Zhang, Y., Qi, P., Hamilton, W.L.: Do syntax trees help pre-trained transformers extract information?. In: Conference of the European Chapter of the Association for Computational Linguistics (2021)

    Google Scholar 

  50. Sandra, D., Taft, M.: Morphological structure, lexical representation and lexical access. Am. J. Psychol. 111(3), 445 (2013)

    Google Scholar 

  51. Shen, Y., Tan, S., Sordoni, A., Courville, A.: Ordered neurons: integrating tree structures into recurrent neural networks (2018)

    Google Scholar 

  52. Shi, H., Zhou, H., Chen, J., Li, L.: On tree-based neural sentence modeling (2018)

    Google Scholar 

  53. Shmueli, B., Ku, L.W., Ray, S.: Reactive supervision: a new method for collecting sarcasm data (2020)

    Google Scholar 

  54. Tay, Y., Tuan, L.A., Hui, S.C., Su, J.: Reasoning with sarcasm by reading in-between (2018)

    Google Scholar 

  55. Wen, Z., et al.: Sememe knowledge and auxiliary information enhanced approach for sarcasm detection. Inf. Process. Manag. Libr. Inf. Retrieval Syst. Commun. Netw. Int. J. (3), 59 (2022)

    Google Scholar 

  56. Wierzbicka, A.: Semantics: primes and universals. Language (1996)

    Google Scholar 

  57. Wu, H., Liu, Y., Shi, S.: Modularized syntactic neural networks for sentence classification. In: Empirical Methods in Natural Language Processing (2020)

    Google Scholar 

  58. Wu, H., Zhang, Z., Song, H., Shi, S., Wu, Q.: Phrase dependency relational graph attention network for aspect-based sentiment analysis. Knowl.-Based Syst. (Jan.25), 236 (2022)

    Google Scholar 

  59. Xiong, T., Zhang, P., Zhu, H., Yang, Y.: Sarcasm detection with self-matching networks and low-rank bilinear pooling (2019)

    Google Scholar 

  60. Zanzotto, F.M., Santilli, A.: Syntnn at SemEval-2018 task 2: is syntax useful for emoji prediction? Embedding syntactic trees in multi layer perceptrons. In: North American Chapter of the Association for Computational Linguistics (2018)

    Google Scholar 

  61. Zhang, M., Zhang, Y., Fu, G.: Tweet sarcasm detection using deep neural network. In: International Conference on Computational Linguistics (2016)

    Google Scholar 

  62. Zhang, S., Zhang, X., Chan, J., Rosso, P.: Irony detection via sentiment-based transfer learning. Inf. Process. Manag. 56(5), 1633–1644 (2019)

    Article  Google Scholar 

  63. Zhang, X., Chen, Y., Li, G.: Multi-modal sarcasm detection based on contrastive attention mechanism. In: International Conference Natural Language Processing (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant (61972336, 62306267), and Zhejiang Provincial Natural Science Foundation of China under Grant (LY23F020001, LY22F020027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Zhang or Haiyan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Shan, J., Wu, H., Chen, Y., Jiang, J., Wang, W. (2024). Deep Sarcasm Detection with Sememe and Syntax Knowledge. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14964. Springer, Singapore. https://doi.org/10.1007/978-981-97-7241-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7241-4_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7240-7

  • Online ISBN: 978-981-97-7241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics