Skip to main content

FedOCD: A One-Shot Federated Framework for Heterogeneous Cross-Domain Recommendation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Cross-domain recommendation (CDR) has been widely applied to address the issue of data sparsity by transferring information from the source domain to the target domain. Since direct information transfer leaks data privacy, existing work combines federated learning with CDR. However, these approaches require that the model of each domain be homogeneity and have high communication overhead, which limits the applicability of federated learning to some extent. In this paper, we propose FedOCD, a one-shot federated cross-domain ensemble Learning framework. FedOCD consists of two main components: source domain modeling aims to learn user embeddings from the source domain data while ensuring privacy through Local Differential Privacy (LDP), and target domain ensemble aims to synthesize the user features from the source domain to improve the recommendation performance. Experimental results on benchmark datasets demonstrate that FedOCD has made significant improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gdpr-info.eu/.

  2. 2.

    https://www.hhs.gov/hipaa/for-professionals/privacy/index.html.

References

  1. Adit, K., Mahashweta, D., Mangesh, B., Hao, Y., Hari, S.: Transfer learning via contextual invariants for one-to-many cross-domain recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1081–1090 (2020)

    Google Scholar 

  2. Bebensee, B.: Local differential privacy: a tutorial. arXiv preprint arXiv:1907.11908 (2019)

  3. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)

    Article  Google Scholar 

  4. Chen, C., Wu, H., Su, J., Lyu, L., Zheng, X., Wang, L.: Differential private knowledge transfer for privacy-preserving cross-domain recommendation. In: Proceedings of the ACM Web Conference 2022, pp. 1455–1465 (2022)

    Google Scholar 

  5. Gong, X., Sharma, A., Karanam, S., Wu, Z., Chen, T., Doermann, D., Innanje, A.: Preserving privacy in federated learning with ensemble cross-domain knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 11891–11899 (2022)

    Google Scholar 

  6. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: simplifying and powering graph convolution network for recommendation. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 639–648 (2020)

    Google Scholar 

  7. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  8. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  9. Kang, W.C., McAuley, J.: Self-attentive sequential recommendation. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 197–206. IEEE (2018)

    Google Scholar 

  10. Krichene, W., Rendle, S.: On sampled metrics for item recommendation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1748–1757 (2020)

    Google Scholar 

  11. Li, D., Wang, J.: Fedmd: heterogenous federated learning via model distillation. arXiv preprint arXiv:1910.03581 (2019)

  12. Li, P., Tuzhilin, A.: DDTCDR: deep dual transfer cross domain recommendation. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 331–339 (2020)

    Google Scholar 

  13. Li, P., Tuzhilin, A.: Dual metric learning for effective and efficient cross-domain recommendations. IEEE Trans. Knowl. Data Eng. 35(1), 321–334 (2021)

    Google Scholar 

  14. Lian, J., Zhang, F., Xie, X., Sun, G.: CCCFNET: a content-boosted collaborative filtering neural network for cross domain recommender systems. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 817–818 (2017)

    Google Scholar 

  15. Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. Adv. Neural. Inf. Process. Syst. 33, 2351–2363 (2020)

    Google Scholar 

  16. Liu, S., Xu, S., Yu, W., Fu, Z., Zhang, Y., Marian, A.: FEDCT: federated collaborative transfer for recommendation. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 716–725 (2021)

    Google Scholar 

  17. Liu, W., et al.: Federated probabilistic preference distribution modelling with compactness co-clustering for privacy-preserving multi-domain recommendation. In: Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, pp. 2206–2214 (2023)

    Google Scholar 

  18. Ma, M., Ren, P., Lin, Y., Chen, Z., Ma, J., Rijke, M.d.: \(\pi \)-net: a parallel information-sharing network for shared-account cross-domain sequential recommendations. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 685–694 (2019)

    Google Scholar 

  19. Meihan, W., Li, L., Tao, C., Rigall, E., Xiaodong, W., Cheng-Zhong, X.: FEDCDR: federated cross-domain recommendation for privacy-preserving rating prediction. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 2179–2188 (2022)

    Google Scholar 

  20. Wang, Y., Zhang, H., Liu, Z., Yang, L., Yu, P.S.: Contrastvae: contrastive variational autoencoder for sequential recommendation. In: Proceedings of the 31st ACM International Conference on Information & Knowledge Management, pp. 2056–2066 (2022)

    Google Scholar 

  21. Xie, X., et al.: Contrastive learning for sequential recommendation. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 1259–1273. IEEE (2022)

    Google Scholar 

  22. Yao, D., et al.: FEDHM: efficient federated learning for heterogeneous models via low-rank factorization. arXiv preprint arXiv:2111.14655 (2021)

  23. Zhang, H., Zheng, D., Yang, X., Feng, J., Liao, Q.: FEDDCSR: federated cross-domain sequential recommendation via disentangled representation learning. arXiv preprint arXiv:2309.08420 (2023)

  24. Zhang, J., et al.: Dense: data-free one-shot federated learning. Adv. Neural. Inf. Process. Syst. 35, 21414–21428 (2022)

    Google Scholar 

  25. Zhang, L., Wu, D., Yuan, X.: FEDZKT: zero-shot knowledge transfer towards resource-constrained federated learning with heterogeneous on-device models. In: 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS), pp. 928–938. IEEE (2022)

    Google Scholar 

  26. Zhang, Y., et al.: Diverse preference augmentation with multiple domains for cold-start recommendations. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 2942–2955. IEEE (2022)

    Google Scholar 

  27. Zhao, C., Li, C., Xiao, R., Deng, H., Sun, A.: CATN: cross-domain recommendation for cold-start users via aspect transfer network. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 229–238 (2020)

    Google Scholar 

  28. Zhao, J., Zhao, P., Zhao, L., Liu, Y., Sheng, V.S., Zhou, X.: Variational self-attention network for sequential recommendation. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1559–1570. IEEE (2021)

    Google Scholar 

  29. Zhu, F., Chen, C., Wang, Y., Liu, G., Zheng, X.: DTCDR: a framework for dual-target cross-domain recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1533–1542 (2019)

    Google Scholar 

  30. Zhu, F., Wang, Y., Chen, C., Liu, G., Zheng, X.: A graphical and attentional framework for dual-target cross-domain recommendation. In: IJCAI, pp. 3001–3008 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjie Kong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., He, X., Ma, X., Wang, B., Shen, G., Kong, X. (2024). FedOCD: A One-Shot Federated Framework for Heterogeneous Cross-Domain Recommendation. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14964. Springer, Singapore. https://doi.org/10.1007/978-981-97-7241-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7241-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7240-7

  • Online ISBN: 978-981-97-7241-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics