Abstract
Persistent memory, emerging as a potential replacement for the next generation of main memory, is gradually gaining prominence. Presently, index structures based on persistent memory primarily focus on B+ trees, hash tables, and indexes, with significant performance improvements observed in recent research on learned indexes. However, most efforts concentrate on reducing the update costs of learned indexes, leaving inadequate support for string key types. Therefore, this paper aims to create a persistent memory string learned index structure capable of handling variable-length string keys, reducing write amplification, and ensuring crash consistency. We evaluate SLIP cost effectiveness ratio using real and synthetic datasets, results show outperforming state-of-the-art string learned indexes SIndex and SLIPP across various workloads.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Huang, K., Wang, T.: Indexing on Non-volatile Memory, 1st edn. Springer, Cham (2023)
Huang, K., Imai, D., Wang, T., Xie, D.: SSDs striking back: the storage jungle and its implications to persistent indexes. In: CIDR, vol. 22, pp. 1ā8 (2022)
Raoux, S., Burr, G.W., Breitwisch, M.J., et al.: Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52(4.5), 465ā479 (2008)
Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80ā83 (2008)
Hong, X.L., Loy, D.J.J., Dananjaya, P.A., et al.: Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 53, 8720ā8746 (2018)
Hady, F.T., Foong, A., Veal, B., et al.: Platform storage performance with 3D XPoint technology. Proc. IEEE 105(9), 1822ā1833 (2017)
Arulraj, J., Levandoski, J., Minhas, U.F., et al.: BzTree: a high-performance latch-free range index for non-volatile memory. Proc. VLDB Endow. 11(5), 553ā565 (2018)
Yang, J., Wei, Q., Chen, C., et al.: NV-tree: reducing consistency cost for NVM-based single level systems. In: 13th USENIX Conference on File and Storage Technologies (FAST 2015), pp. 167ā181 (2015)
Wang, C., Hu, J., Yang, T.Y., et al.: SEPH: scalable, efficient, and predictable hashing on persistent memory. In: 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2023), pp. 479ā495 (2023)
Hu, D., Chen, Z., Che, W., et al.: Halo: a hybrid PMem-DRAM persistent hash index with fast recovery. In: Proceedings of the 2022 International Conference on Management of Data, pp. 1049ā1063 (2022)
Lu, B., Ding, J., Lo, E., et al.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endow. 15(3), 597ā610 (2021)
Zhang, Z., Chu, Z., Jin, P., et al.: PLIN: a persistent learned index for non-volatile memory with high performance and instant recovery. Proc. VLDB Endow. 16(2), 243ā255 (2022)
Wang, Z., Ding, C., Song, F., et al.: WIPE: a write-optimized learned index for persistent memory. ACM Trans. Archit. Code Optim. 21(2), 1ā25 (2024)
Kraska, T., Beutel, A., Chi, E.H., et al.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489ā504 (2018)
Wang, Y., Tang, C., Wang, Z., et al.: SIndex: a scalable learned index for string keys. In: Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems, pp. 17ā24 (2020)
Handy, J., Coughlin, T.: Persistent memories without optane, where would we be. In: Storage Developer Conference (SDC). SNIA (2022)
Ding, J., Minhas, U.F., et al.: ALEX: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969ā984 (2020)
Wu, J., Zhang, Y., Chen, S., et al.: Updatable learned index with precise positions. arXiv preprint arXiv:2104.05520 (2021)
Tang, C., Wang, Y., Dong, Z., et al.: XIndex: a scalable learned index for multicore data storage. In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 308ā320 (2020)
Gugnani, S., et al.: Understanding the idiosyncrasies of real persistent memory. In: Proceedings of the VLDB Endowment, pp. 626ā639 (2020)
Chen, Z., Hua, Y., Ding, B., et al.: Lock-free concurrent level hashing for persistent memory. In: Proceedings of the 2020 USENIX Annual Technical Conference, pp.799ā812 (2020)
Alguliev, R.M., et al.: CDDS: constraint-driven document summarization models. Expert Syst. Appl. 40(2), 458ā65 (2013)
Yang, J., Kim, J., Hoseinzadeh, M., et al.: An empirical guide to the behavior and use of scalable persistent memory. In: File and Storage Technologies (2020)
Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497ā506 (2009)
Manegold, S., Boncz, P., Kersten, M.L.: Generic database cost models for hierarchical memory systems. In: Proceedings of the 28th International Conference on Very Large Databases VLDB, pp. 191ā202 (2022)
Venkataraman, S., Tolia, N., Ranganathan, P., et al.: Consistent and durable data structures for non-volatile byte-addressable memory. In: Proceedings of the 9th USENIX Conference on File and Storage Technologies. FAST (2011)
Zhou, W., Yang, S.: SLIPP: a space-efficient learned index for string keys. In: Proceedings of the 2024 6th International Conference on Big-data Service and Intelligent Computation (2024)
Qi, X., Wang, M., Wen, Y., Zhang, H., Yuan, X.: Weighted cost model for optimized query processing. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds.) WISA 2022. LNCS, vol. 13579, pp. 473ā484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20309-1_42
Mandelman, J.A., Dennard, R.H., Bronner, G.B., et al.: Challenges and future directions for the scaling of dynamic random-access memory (DRAM). IBM J. Res. Dev. 2(3), 187ā212 (2002)
Acknowledgment
Shiyu Yang is supported by National Key R&D Program of China (2022YFB3103701) and Guangzhou Basic and Applied Basic Research Foundation (202201020131).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, Y., Yang, S., Zhong, W., Ma, G., Yang, J., Zhou, W. (2024). PLIS: Persistent Learned Index for Strings. In: Jin, C., Yang, S., Shang, X., Wang, H., Zhang, Y. (eds) Web Information Systems and Applications. WISA 2024. Lecture Notes in Computer Science, vol 14883. Springer, Singapore. https://doi.org/10.1007/978-981-97-7707-5_22
Download citation
DOI: https://doi.org/10.1007/978-981-97-7707-5_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-7706-8
Online ISBN: 978-981-97-7707-5
eBook Packages: Computer ScienceComputer Science (R0)