Skip to main content

PLIS: Persistent Learned Index for Strings

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14883))

Included in the following conference series:

  • 560 Accesses

Abstract

Persistent memory, emerging as a potential replacement for the next generation of main memory, is gradually gaining prominence. Presently, index structures based on persistent memory primarily focus on B+ trees, hash tables, and indexes, with significant performance improvements observed in recent research on learned indexes. However, most efforts concentrate on reducing the update costs of learned indexes, leaving inadequate support for string key types. Therefore, this paper aims to create a persistent memory string learned index structure capable of handling variable-length string keys, reducing write amplification, and ensuring crash consistency. We evaluate SLIP cost effectiveness ratio using real and synthetic datasets, results show outperforming state-of-the-art string learned indexes SIndex and SLIPP across various workloads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, K., Wang, T.: Indexing on Non-volatile Memory, 1st edn. Springer, Cham (2023)

    Google Scholar 

  2. Huang, K., Imai, D., Wang, T., Xie, D.: SSDs striking back: the storage jungle and its implications to persistent indexes. In: CIDR, vol. 22, pp. 1ā€“8 (2022)

    Google Scholar 

  3. Raoux, S., Burr, G.W., Breitwisch, M.J., et al.: Phase-change random access memory: a scalable technology. IBM J. Res. Dev. 52(4.5), 465ā€“479 (2008)

    Google Scholar 

  4. Strukov, D.B., Snider, G.S., Stewart, D.R., et al.: The missing memristor found. Nature 453(7191), 80ā€“83 (2008)

    Article  Google Scholar 

  5. Hong, X.L., Loy, D.J.J., Dananjaya, P.A., et al.: Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci. 53, 8720ā€“8746 (2018)

    Article  Google Scholar 

  6. Hady, F.T., Foong, A., Veal, B., et al.: Platform storage performance with 3D XPoint technology. Proc. IEEE 105(9), 1822ā€“1833 (2017)

    Article  Google Scholar 

  7. Arulraj, J., Levandoski, J., Minhas, U.F., et al.: BzTree: a high-performance latch-free range index for non-volatile memory. Proc. VLDB Endow. 11(5), 553ā€“565 (2018)

    Article  Google Scholar 

  8. Yang, J., Wei, Q., Chen, C., et al.: NV-tree: reducing consistency cost for NVM-based single level systems. In: 13th USENIX Conference on File and Storage Technologies (FAST 2015), pp. 167ā€“181 (2015)

    Google Scholar 

  9. Wang, C., Hu, J., Yang, T.Y., et al.: SEPH: scalable, efficient, and predictable hashing on persistent memory. In: 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2023), pp. 479ā€“495 (2023)

    Google Scholar 

  10. Hu, D., Chen, Z., Che, W., et al.: Halo: a hybrid PMem-DRAM persistent hash index with fast recovery. In: Proceedings of the 2022 International Conference on Management of Data, pp. 1049ā€“1063 (2022)

    Google Scholar 

  11. Lu, B., Ding, J., Lo, E., et al.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endow. 15(3), 597ā€“610 (2021)

    Article  Google Scholar 

  12. Zhang, Z., Chu, Z., Jin, P., et al.: PLIN: a persistent learned index for non-volatile memory with high performance and instant recovery. Proc. VLDB Endow. 16(2), 243ā€“255 (2022)

    Article  Google Scholar 

  13. Wang, Z., Ding, C., Song, F., et al.: WIPE: a write-optimized learned index for persistent memory. ACM Trans. Archit. Code Optim. 21(2), 1ā€“25 (2024)

    Article  Google Scholar 

  14. Kraska, T., Beutel, A., Chi, E.H., et al.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489ā€“504 (2018)

    Google Scholar 

  15. Wang, Y., Tang, C., Wang, Z., et al.: SIndex: a scalable learned index for string keys. In: Proceedings of the 11th ACM SIGOPS Asia-Pacific Workshop on Systems, pp. 17ā€“24 (2020)

    Google Scholar 

  16. Handy, J., Coughlin, T.: Persistent memories without optane, where would we be. In: Storage Developer Conference (SDC). SNIA (2022)

    Google Scholar 

  17. Ding, J., Minhas, U.F., et al.: ALEX: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969ā€“984 (2020)

    Google Scholar 

  18. Wu, J., Zhang, Y., Chen, S., et al.: Updatable learned index with precise positions. arXiv preprint arXiv:2104.05520 (2021)

  19. Tang, C., Wang, Y., Dong, Z., et al.: XIndex: a scalable learned index for multicore data storage. In: Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 308ā€“320 (2020)

    Google Scholar 

  20. Gugnani, S., et al.: Understanding the idiosyncrasies of real persistent memory. In: Proceedings of the VLDB Endowment, pp. 626ā€“639 (2020)

    Google Scholar 

  21. Chen, Z., Hua, Y., Ding, B., et al.: Lock-free concurrent level hashing for persistent memory. In: Proceedings of the 2020 USENIX Annual Technical Conference, pp.799ā€“812 (2020)

    Google Scholar 

  22. Alguliev, R.M., et al.: CDDS: constraint-driven document summarization models. Expert Syst. Appl. 40(2), 458ā€“65 (2013)

    Article  Google Scholar 

  23. Yang, J., Kim, J., Hoseinzadeh, M., et al.: An empirical guide to the behavior and use of scalable persistent memory. In: File and Storage Technologies (2020)

    Google Scholar 

  24. Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497ā€“506 (2009)

    Google Scholar 

  25. Manegold, S., Boncz, P., Kersten, M.L.: Generic database cost models for hierarchical memory systems. In: Proceedings of the 28th International Conference on Very Large Databases VLDB, pp. 191ā€“202 (2022)

    Google Scholar 

  26. Venkataraman, S., Tolia, N., Ranganathan, P., et al.: Consistent and durable data structures for non-volatile byte-addressable memory. In: Proceedings of the 9th USENIX Conference on File and Storage Technologies. FAST (2011)

    Google Scholar 

  27. Zhou, W., Yang, S.: SLIPP: a space-efficient learned index for string keys. In: Proceedings of the 2024 6th International Conference on Big-data Service and Intelligent Computation (2024)

    Google Scholar 

  28. Qi, X., Wang, M., Wen, Y., Zhang, H., Yuan, X.: Weighted cost model for optimized query processing. In: Zhao, X., Yang, S., Wang, X., Li, J. (eds.) WISA 2022. LNCS, vol. 13579, pp. 473ā€“484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20309-1_42

    Chapter  Google Scholar 

  29. Mandelman, J.A., Dennard, R.H., Bronner, G.B., et al.: Challenges and future directions for the scaling of dynamic random-access memory (DRAM). IBM J. Res. Dev. 2(3), 187ā€“212 (2002)

    Article  Google Scholar 

Download references

Acknowledgment

Shiyu Yang is supported by National Key R&D Program of China (2022YFB3103701) and Guangzhou Basic and Applied Basic Research Foundation (202201020131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Yang, S., Zhong, W., Ma, G., Yang, J., Zhou, W. (2024). PLIS: Persistent Learned Index for Strings. In: Jin, C., Yang, S., Shang, X., Wang, H., Zhang, Y. (eds) Web Information Systems and Applications. WISA 2024. Lecture Notes in Computer Science, vol 14883. Springer, Singapore. https://doi.org/10.1007/978-981-97-7707-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7707-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7706-8

  • Online ISBN: 978-981-97-7707-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics