Skip to main content

ToI-Based Data Utility Maximization for UAV-Assisted Wireless Sensor Networks

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15179))

  • 334 Accesses

Abstract

Using Unmanned Aerial Vehicles as mobile base stations is a promising way to collect data from sensor nodes, especially for large-scale wireless sensor networks. Previous works mainly focus on improving the freshness of the collected data or the energy efficiency by scheduling UAVs. Considering the fact that the sensing data in some applications is time-sensitive, that is, the value of the sensing data is based on its Timeliness of Information (ToI), which decays over time. Therefore, in this paper, we investigate the UAV Trajectory optimization problem for Maximizing the ToI-based data utility (TMT). We propose an improved deep reinforcement learning-based algorithm to address the problem, and the experience results demonstrate the effectiveness of our designs.

This work is supported by the National Natural Science Foundation of China (with grants No. 62202016 and No. 62202055).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lai, R., et al.: Energy-efficient scheduling in UAV-assisted hierarchical wireless sensor networks. IEEE Internet Things J. (2024)

    Google Scholar 

  2. Liu, J., Zhang, H.: Height-fixed UAV enabled energy-efficient data collection in RIS-aided wireless sensor networks. IEEE Trans. Wireless Commun. 22(11), 7452ā€“7463 (2023)

    Article  Google Scholar 

  3. Luo, C., Satpute, M.N., Li, D., Wang, Y., Chen, W., Wu, W.: Fine-grained trajectory optimization of multiple UAVs for efficient data gathering from WSNs. IEEE/ACM Trans. Networking 29(1), 162ā€“175 (2020)

    Google Scholar 

  4. Dai, Z., et al.: Aoi-minimal UAV crowdsensing by model-based graph convolutional reinforcement learning. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communications, pp. 1029ā€“1038. IEEE (2022)

    Google Scholar 

  5. Kaul, S., Gruteser, M., Rai, V., Kenney, J.: Minimizing age of information in vehicular networks. In: 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 350ā€“358. IEEE (2011)

    Google Scholar 

  6. Qin, Z., Zhang, X., Zhang, X., Lu, B., Liu, Z., Guo, L.: The UAV trajectory optimization for data collection from time-constrained IoT devices: a hierarchical deep Q-network approach. Appl. Sci. 12(5), 2546 (2022)

    Article  Google Scholar 

  7. Samir, M., Assi, C., Sharafeddine, S., Ebrahimi, D., Ghrayeb, A.: Age of information aware trajectory planning of UAVs in intelligent transportation systems: a deep learning approach. IEEE Trans. Veh. Technol. 69(11), 12382ā€“12395 (2020)

    Article  Google Scholar 

  8. Jia, Z., Qin, X., Wang, Z., Liu, B.: Age-based path planning and data acquisition in UAV-assisted IoT networks. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1ā€“6. IEEE (2019)

    Google Scholar 

  9. Mao, C., Liu, J., Xie, L.: Multi-UAV aided data collection for age minimization in wireless sensor networks. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 80ā€“85. IEEE (2020)

    Google Scholar 

  10. Dai, Z., Liu, C.H., Han, R., Wang, G., Leung, K., Tang, J.: Delay-sensitive energy-efficient UAV crowdsensing by deep reinforcement learning. IEEE Trans. Mob. Comput. (2021)

    Google Scholar 

  11. Yang, L., Yao, H., Wang, J., Jiang, C., Benslimane, A., Liu, Y.: Multi-UAV-enabled load-balance mobile-edge computing for IoT networks. IEEE Internet Things J. 7(8), 6898ā€“6908 (2020)

    Article  Google Scholar 

  12. Zeng, Y., Xu, J., Zhang, R.: Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wireless Commun. 18(4), 2329ā€“2345 (2019)

    Article  Google Scholar 

  13. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wireless Commun. 16(6), 3747ā€“3760 (2017)

    Article  Google Scholar 

  14. Paul, A., Freund, D., Ferber, A., Shmoys, D.B., Williamson, D.P.: Budgeted prize-collecting traveling salesman and minimum spanning tree problems. Math. Oper. Res. 45(2), 576ā€“590 (2020)

    Article  MathSciNet  Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529ā€“533 (2015)

    Google Scholar 

  16. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  17. Luo, C., Liu, N., Hou, Y., Hong, Y., Chen, Z., Li, D.: Trajectory optimization of laser-charged UAV to minimize the average age of information for wireless rechargeable sensor network. Theoret. Comput. Sci. 945, 113680 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjian Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Q., Li, Z., Li, J., Guo, J., Ding, X., Li, D. (2024). ToI-Based Data Utility Maximization for UAV-Assisted Wireless Sensor Networks. In: Ghosh, S., Zhang, Z. (eds) Algorithmic Aspects in Information and Management. AAIM 2024. Lecture Notes in Computer Science, vol 15179. Springer, Singapore. https://doi.org/10.1007/978-981-97-7798-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7798-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7797-6

  • Online ISBN: 978-981-97-7798-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics