Skip to main content

Making the Primary Task Primary: Boosting Few-Shot Classification by Gradient-Biased Multi-task Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15031))

Included in the following conference series:

  • 232 Accesses

Abstract

Recent works in few-shot learning (FSL) have explored the incorporation of supplementary self-supervised auxiliary tasks to facilitate inductive knowledge transfer, yielding promising outcomes. Nevertheless, these approaches only optimize the shared parameters of the FSL model by minimizing a linear combination of two or more task losses, along with manually selecting the combination coefficients. Moreover, due to the unknown and intricate relationships between different tasks, such a simplistic linear combination operation is prone to inducing task conflicts, leading to adverse knowledge transfer. To tackle these challenges, we argue that in few-shot learning (FSL) augmented with auxiliary tasks, the emphasis should be laid on enhancing the performance of the primary FSL task. Specifically, to mitigate the aforementioned task conflicts, we introduce a new Gradient-biAsed Multi-task lEarning (GAME) method, which “makes the primary task primary” by considering both gradient direction and loss magnitude. Extensive experiments demonstrate that the proposed GAME method obtains substantial performance improvements over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, Y., Xue, H., Zhao, X., Zhang, L.: Conditional self-supervised learning for few-shot classification. In: IJCAI (2021)

    Google Scholar 

  2. Bertinetto, L., Henriques, J.F., Torr, P.H.S., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. In: ICLR (2019)

    Google Scholar 

  3. Chen, Z., Badrinarayanan, V., Lee, C., Rabinovich, A.: Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks. In: ICML (2018)

    Google Scholar 

  4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  5. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: ICCV (2019)

    Google Scholar 

  6. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)

    Google Scholar 

  7. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. In: ICLR (2018)

    Google Scholar 

  8. Guo, Y., Cheung, N.M.: Attentive weights generation for few shot learning via information maximization. In: CVPR (2020)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  10. Hu, S.X., Li, D., Stühmer, J., Kim, M., Hospedales, T.M.: Pushing the limits of simple pipelines for few-shot learning: External data and fine-tuning make a difference. In: CVPR (2022)

    Google Scholar 

  11. Javaloy, A., Valera, I.: Rotograd: Dynamic gradient homogenization for multi-task learning. In: ICLR (2022)

    Google Scholar 

  12. Kang, D., Cho, M.: Integrative few-shot learning for classification and segmentation. In: CVPR (2022)

    Google Scholar 

  13. Kim, J., Kim, H., Kim, G.: Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning. In: ECCV (2020)

    Google Scholar 

  14. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML (2015)

    Google Scholar 

  15. Laenen, S., Bertinetto, L.: On episodes, prototypical networks, and few-shot learning. In: NeurIPS (2021)

    Google Scholar 

  16. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: ECCV (2016)

    Google Scholar 

  17. Lee, H., Hwang, S.J., Shin, J.: Rethinking data augmentation: Self-supervision and self-distillation. In: CVPR (2019)

    Google Scholar 

  18. Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR (2019)

    Google Scholar 

  19. Li, H., Eigen, D., Dodge, S., Zeiler, M., Wang, X.: Finding task-relevant features for few-shot learning by category traversal. In: CVPR (2019)

    Google Scholar 

  20. Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: CVPR (2019)

    Google Scholar 

  21. Lin, H., Han, G., Ma, J., Huang, S., Lin, X., Chang, S.F.: Supervised masked knowledge distillation for few-shot transformers. In: CVPR (2023)

    Google Scholar 

  22. Liu, C., Fu, Y., Xu, C., Yang, S., Li, J., Wang, C., Zhang, L.: Learning a few-shot embedding model with contrastive learning. In: AAAI (2021)

    Google Scholar 

  23. Liu, L., Li, Y., Kuang, Z., Xue, J., Chen, Y., Yang, W., Liao, Q., Zhang, W.: Towards impartial multi-task learning. In: ICLR (2021)

    Google Scholar 

  24. Mangla, P., Singh, M., Sinha, A., Kumari, N., Balasubramanian, V.N., Krishnamurthy, B.: Charting the right manifold: Manifold mixup for few-shot learning. In: WACV (2020)

    Google Scholar 

  25. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: ECCV (2016)

    Google Scholar 

  26. Oreshkin, B.N., López, P.R., Lacoste, A.: TADAM: task dependent adaptive metric for improved few-shot learning. In: NeurIPS (2018)

    Google Scholar 

  27. Rajasegaran, J., Khan, S.H., Hayat, M., Khan, F.S., Shah, M.: Self-supervised knowledge distillation for few-shot learning. In: BMVC (2020)

    Google Scholar 

  28. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR (2017)

    Google Scholar 

  29. Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B., Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)

    Google Scholar 

  30. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (2014)

    Google Scholar 

  31. Rusu, A.A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero, S., Hadsell, R.: Meta-learning with latent embedding optimization. In: ICLR (2019)

    Google Scholar 

  32. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: NeurIPS (2018)

    Google Scholar 

  33. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  34. Su, J.C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? In: ECCV (2020)

    Google Scholar 

  35. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: CVPR (2019)

    Google Scholar 

  36. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  37. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: ECCV (2020)

    Google Scholar 

  38. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  39. Wang, Y., Chao, W., Weinberger, K.Q., van der Maaten, L.: Simpleshot: Revisiting nearest-neighbor classification for few-shot learning. CoRR (2019)

    Google Scholar 

  40. Wertheimer, D., Tang, L., Hariharan, B.: Few-shot classification with feature map reconstruction networks. In: CVPR (2021)

    Google Scholar 

  41. Ye, H., Hu, H., Zhan, D., Sha, F.: Few-shot learning via embedding adaptation with set-to-set functions. In: CVPR (2020)

    Google Scholar 

  42. Ye, H.J., Ming, L., chuan Zhan, D., Chao, W.L.: Few-shot learning with a strong teacher. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  43. Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., Finn, C.: Gradient surgery for multi-task learning. In: NeurIPS (2020)

    Google Scholar 

  44. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  45. Zhang, C., Cai, Y., Lin, G., Shen, C.: Deepemd: Few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: CVPR (2020)

    Google Scholar 

  46. Zhang, M., Zhang, J., Lu, Z., Xiang, T., Ding, M., Huang, S.: Iept: Instance-level and episode-level pretext tasks for few-shot learning. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Natural Science Foundation of China (62106100, 62276128, 62192783), the Jiangsu Natural Science Foundation (BK20221441), Young Elite Scientists Sponsorship Program by CAST (2023QNRC001), and Guangdong Basic and Applied Basic Research Foundation (2024A1515011340).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y. et al. (2025). Making the Primary Task Primary: Boosting Few-Shot Classification by Gradient-Biased Multi-task Learning. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15031. Springer, Singapore. https://doi.org/10.1007/978-981-97-8487-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8487-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8486-8

  • Online ISBN: 978-981-97-8487-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics