Abstract
ATARI is a suite of video games used by reinforcement learning (RL) researchers to test the effectiveness of the learning algorithm. Receiving only the raw pixels and the game score, the agent learns to develop sophisticated strategies, even to the comparable level of a professional human games tester. Ideally, we also want an agent requiring very few interactions with the environment. Previous competitive model-free algorithms for the task use the valued-based Rainbow algorithm without any policy head. In this paper, we change it by proposing a practical discrete variant of the soft actor-critic (SAC) algorithm. The new variant enables off-policy learning using policy heads for discrete domains. By incorporating it into the advanced Rainbow variant, i.e., the “bigger, better, faster” (BBF), the resulting SAC-BBF improves the previous state-of-the-art interquartile mean (IQM) from 1.045 to 1.088, and it achieves these results using only replay ratio (RR) 2. By using lower RR 2, the training time of SAC-BBF is strictly one-third of the time required for BBF to achieve an IQM of 1.045 using RR 8. As a value of IQM greater than one indicates super-human performance, SAC-BBF is also the only model-free algorithm with a super-human level using only RR 2. The code is publicly available on GitHub at https://github.com/lezhang-thu/bigger-better-faster-SAC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Schwarzer, M., Castro, P.S., Courville, A.C., Bellemare, M.: Deep reinforcement learning at the edge of the statistical precipice. Adv. Neural. Inf. Process. Syst. 34, 29304–29320 (2021)
Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Christodoulou, P.: Soft actor-critic for discrete action settings. arXiv:1910.07207 (2019)
D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.L., Bellemare, M.G., Courville, A.: Sample-efficient reinforcement learning by breaking the replay ratio barrier. In: The Eleventh International Conference on Learning Representations (2022)
Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., et al.: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In: International Conference on Machine Learning, pp. 1407–1416. PMLR (2018)
Gruslys, A., Dabney, W., Azar, M.G., Piot, B., Bellemare, M., Munos, R.: The reactor: A fast and sample-efficient actor-critic agent for reinforcement learning. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=rkHVZWZAZ
Haarnoja, T., Tang, H., Abbeel, P., Levine, S.: Reinforcement learning with deep energy-based policies. In: International Conference on Machine Learning, pp. 1352–1361. PMLR (2017)
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870. PMLR (2018)
Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., Silver, D.: Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Łukasz Kaiser, Babaeizadeh, M., Miłos, P., Osiński, B., Campbell, R.H., Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R., Tucker, G., Michalewski, H.: Model based reinforcement learning for atari. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=S1xCPJHtDB
Kielak, K.P.: Do recent advancements in model-based deep reinforcement learning really improve data efficiency?, p. 9 (2020). https://openreview.net/forum (2019)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)
Laskin, M., Srinivas, A., Abbeel, P.: Curl: Contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp. 5639–5650. PMLR (2020)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkg6RiCqY7
Micheli, V., Alonso, E., Fleuret, F.: Transformers are sample-efficient world models. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=vhFu1Acb0xb
Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937. PMLR (2016)
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.L., Courville, A.: The primacy bias in deep reinforcement learning. In: International Conference on Machine Learning, pp. 16828–16847. PMLR (2022)
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al.: Mastering atari, go, chess and shogi by planning with a learned model. Nature 588(7839), 604–609 (2020)
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv:1707.06347 (2017)
Schwarzer, M., Anand, A., Goel, R., Hjelm, R.D., Courville, A., Bachman, P.: Data-efficient reinforcement learning with self-predictive representations. In: International Conference on Learning Representations (2020)
Schwarzer, M., Ceron, J.S.O., Courville, A., Bellemare, M.G., Agarwal, R., Castro, P.S.: Bigger, better, faster: Human-level atari with human-level efficiency. In: International Conference on Machine Learning, pp. 30365–30380. PMLR (2023)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press (2018)
Van Hasselt, H.P., Hessel, M., Aslanides, J.: When to use parametric models in reinforcement learning? Advances in Neural Information Processing Systems 32 (2019)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)
Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Freitas, N.: Sample efficient actor-critic with experience replay. In: International Conference on Learning Representations (2017). https://openreview.net/forum?id=HyM25Mqel
Xu, M., Quiroz, M., Kohn, R., Sisson, S.A.: Variance reduction properties of the reparameterization trick. In: Chaudhuri, K., Sugiyama, M. (eds.) Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 89, pp. 2711–2720. PMLR. Accessed 16–18 April 2019. https://proceedings.mlr.press/v89/xu19a.html
Xu, Y., Hu, D., Liang, L., McAleer, S.M., Abbeel, P., Fox, R.: Target entropy annealing for discrete soft actor-critic. In: Deep RL Workshop NeurIPS (2021)
Yarats, D., Kostrikov, I., Fergus, R.: Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. In: International Conference on Learning Representations (2020)
Ye, W., Liu, S., Kurutach, T., Abbeel, P., Gao, Y.: Mastering atari games with limited data. Adv. Neural. Inf. Process. Syst. 34, 25476–25488 (2021)
Acknowledgement:
Le Zhang is supported by the Fundamental Research Funds for the Central Universities (Grant No. 3282023011 and 3282023053). Yong Gu is supported by National Natural Science Foundation of China Project (Grant No. 62262023). Xin Zhao is supported by the National Natural Science Foundation of China (Grant No. 12201015). Yanshuo Zhang is supported by the Natural Science Foundation of Beijing (Grant No. 4232034).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, L. et al. (2025). Generalizing Soft Actor-Critic Algorithms to Discrete Action Spaces. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15031. Springer, Singapore. https://doi.org/10.1007/978-981-97-8487-5_3
Download citation
DOI: https://doi.org/10.1007/978-981-97-8487-5_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8486-8
Online ISBN: 978-981-97-8487-5
eBook Packages: Computer ScienceComputer Science (R0)