Skip to main content

Empathizing Before Generation: A Double-Layered Framework for Emotional Support LLM

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15032))

Included in the following conference series:

  • 135 Accesses

Abstract

Large Language Models (LLMs) have found extensive use across different applications due to its diverse capabilities and proficiency in executing instructions. In the case of chatbots, they are frequently required to show empathy when used in the context of emotional support. However, to date their performance is still not satisfactory due to the lack of deep understanding of user related issues. Hence, we introduce the Empathizing Before Generation (EBG), a two-step learning framework that allows LLMs to analyze the chain of thought (COT) prior to generating a response. This model also enables the inference of the 24 emotions conveyed in the user’s text as well as facilitates the generation of empathetic, high-quality and appropriate responses. We create a COT version of the dataset for sentiment inference by utilizing a publicly accessible sentiment dialogue. This dataset is then used as support for the training of two layers of EBG. Experiments indicate that models integrated with the EBG outperform other models in demonstrating empathy, with 98.2% and 92.8% accuracy in emotional attributes and labels respectively. Additionally, there is a notable enhancement in the model’s capacity to comprehend COT instructions, infer emotions, and generate answers that are more satisfactory than other models.

Jiahao Zhu and Zijian Jiang—Contributed Equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://github.com/henrytanner52/all-MiniLM-L6-v2

  2. https://www.promptingguide.ai/techniques/cot

  3. https://lightning.ai/pages/community/lora-insights

  4. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F.L., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., et al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  5. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Amodei, D.: Language models are few-shot learners (2020)

    Google Scholar 

  6. Chiang, W.L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang, H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J.E., Stoica, I., Xing, E.P.: Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality (March 2023). https://lmsys.org/blog/2023-03-30-vicuna/

  7. Cui, J., Li, Z., Yan, Y., Chen, B., Yuan, L.: Chatlaw: Open-source legal large language model with integrated external knowledge bases. arXiv preprint arXiv:2306.16092 (2023)

  8. Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z., Tang, J.: Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint arXiv:2103.10360 (2021)

  9. Fu, C., Chen, P., Shen, Y., Qin, Y., Zhang, M., Lin, X., Yang, J., Zheng, X., Li, K., Sun, X., Wu, Y., Ji, R.: Mme: A comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394 (2023)

  10. Fu, C., Zhang, R., Wang, Z., Huang, Y., Zhang, Z., Qiu, L., Ye, G., Shen, Y., Zhang, M., Chen, P., Zhao, S., Lin, S., Jiang, D., Yin, D., Gao, P., Li, K., Li, H., Sun, X.: A challenger to gpt-4v? Early explorations of gemini in visual expertise. arXiv preprint arXiv:2312.12436 (2023)

  11. Kang, D., Kim, S., Kwon, T., Moon, S., Cho, H., Yu, Y., Lee, D., Yeo, J.: Can large language models be good emotional supporter? Mitigating preference bias on emotional support conversation. ArXiv abs/2402.13211 (2024). https://api.semanticscholar.org/CorpusID:267759569

  12. Lei, S., Dong, G., Wang, X., Wang, K., Wang, S.: Instructerc: Reforming emotion recognition in conversation with a retrieval multi-task llms framework. ArXiv abs/2309.11911 (2023). https://api.semanticscholar.org/CorpusID:262084263

  13. Li, Z., Chen, G., Shao, R., Jiang, D., Nie, L.: Enhancing the emotional generation capability of large language models via emotional chain-of-thought. arXiv preprint arXiv:2401.06836 (2024)

  14. Liu, J.M., Li, D., Cao, H., Ren, T., Liao, Z., Wu, J.: Chatcounselor: A large language models for mental health support. arXiv preprint arXiv:2309.15461 (2023)

  15. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  16. Rashkin, H., Smith, E.M., Li, M., Boureau, Y.L.: Towards empathetic open-domain conversation models: A new benchmark and dataset. arXiv preprint arXiv:1811.00207 (2018)

  17. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)

  18. Yang, H., Liu, X.Y., Wang, C.D.: Fingpt: Open-source financial large language models. arXiv preprint arXiv:2306.06031 (2023)

  19. Yin, S., Fu, C., Zhao, S., Xu, T., Wang, H., Sui, D., Shen, Y., Li, K., Sun, X., Chen, E.: Woodpecker: Hallucination correction for multimodal large language models. arXiv preprint arXiv:2310.16045 (2023)

  20. Yu, Y., Yang, C.H.H., Kolehmainen, J., Shivakumar, P.G., Gu, Y., Ren, S.R.R., Luo, Q., Gourav, A., Chen, I.F., Liu, Y.C., et al.: Low-rank adaptation of large language model rescoring for parameter-efficient speech recognition. In: 2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 1–8. IEEE (2023)

    Google Scholar 

  21. Zhang, W., Deng, Y., Liu, B., Pan, S.J., Bing, L.: Sentiment analysis in the era of large language models: A reality check. arXiv preprint arXiv:2305.15005 (2023)

  22. Zhang, Y., Wang, M., Tiwari, P., Li, Q., Wang, B., Qin, J.: Dialoguellm: Context and emotion knowledge-tuned llama models for emotion recognition in conversations. arXiv preprint arXiv:2310.11374 (2023)

  23. Zheng, Z., Liao, L., Deng, Y., Nie, L.: Building emotional support chatbots in the era of llms. ArXiv abs/2308.11584 (2023), https://api.semanticscholar.org/CorpusID:261065100

  24. Zhu, W., Wang, X.: Chatmed: A chinese medical large language model. https://github.com/michael-wzhu/ChatMed (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Jiang, Z., Zhou, B., Su, J., Zhang, J., Li, Z. (2025). Empathizing Before Generation: A Double-Layered Framework for Emotional Support LLM. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15032. Springer, Singapore. https://doi.org/10.1007/978-981-97-8490-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8490-5_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8489-9

  • Online ISBN: 978-981-97-8490-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics