Abstract
Given the rise of social media, detecting social bots is crucial yet challenging. Despite state-of-the-art graph-based methods, bots can mimic real users by following many authentic accounts, significantly undermining the effectiveness of detection efforts. To tackle this, we propose NDE-GNN, a Neighborhood Difference-Enhanced Graph Neural Network based on Hypergraph. Utilizing hypergraphs, we extract user neighborhood representations, differentiate them with node features for distinct characteristics, and enhance these via Graph Neural Networks. Enhanced hypergraph features are fused with original graph features using a self-attention mechanism and feature fusion module. Fused features pass through a linear layer and softmax for detection. Experimental validation on real-world Twitter bot datasets confirms the superiority of NDE-GNN.
Shuhao Shi and Yan Li—Contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ali Alhosseini, S., Bin Tareaf, R., Najafi, P., Meinel, C.: Detect me if you can: spam bot detection using inductive representation learning. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 148–153 (2019)
Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolutional networks. In: AAAI Conference on Artificial Intelligence (2021)
Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3950–3957 (2021)
Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)
Cresci, S., Pietro, R.D., Petrocchi, M., Spognardi, A., Tesconi, M.: Fame for sale: efficient detection of fake twitter followers. Decis. Support Syst. 80, 56–71 (2015)
Dong, Y., Ding, K., Jalaian, B., Ji, S., Li, J.: Adagnn: graph neural networks with adaptive frequency response filter. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 392–401 (2021)
Feng, F., Yang, Y., Cer, D.M., Arivazhagan, N., Wang, W.: Language-agnostic BERT sentence embedding. In: Annual Meeting of the Association for Computational Linguistics (2020)
Feng, S., Wan, H., Wang, N., Li, J., Luo, M.: Twibot-20: a comprehensive twitter bot detection benchmark. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 4485–4494 (2021)
Feng, S., Wan, H., Wang, N., Luo, M.: Botrgcn: Twitter bot detection with relational graph convolutional networks. In: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 236–239 (2021)
Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3558–3565 (2019)
Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Ivanov, S., Prokhorenkova, L.: Boost then convolve: gradient boosting meets graph neural networks (2021). arxiv:2101.08543)
Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arxiv:1609.02907
Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks meet personalized Pagerank. In: International Conference on Learning Representations (2018)
Liu, S., Ying, R., Dong, H., Li, L., Xu, T., Rong, Y., Zhao, P., Huang, J., Wu, D.: Local augmentation for graph neural networks. In: International Conference on Machine Learning, pp. 14054–14072. PMLR (2022)
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: A robustly optimized BERT pretraining approach (2019). arxiv:1907.11692
Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: The semantic web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, Proceedings 15, pp. 593–607. Springer (2018)
Shi, S., Qiao, K., Chen, C., Yang, J., Chen, J., Yan, B.: Over-sampling strategy in feature space for graphs based class-imbalanced bot detection. In: Companion Proceedings of the ACM on Web Conference 2024, pp. 738–741 (2024)
Shi, S., Qiao, K., Chen, J., Yang, S., Yang, J., Song, B., Wang, L., Yan, B.: Mgtab: a multi-relational graph-based twitter account detection benchmark (2023). arxiv:2301.01123
Shi, S., Qiao, K., Yang, J., Song, B., Chen, J., Yan, B.: Rf-gnn: Random forest boosted graph neural network for social bot detection (2023). arxiv:2304.08239
Shi, S., Qiao, K., Yang, S., Wang, L., Chen, J., Yan, B.: Boosting-gnn: boosting algorithm for graph networks on imbalanced node classification. Front. Neurorobot. 15, 775688 (2021)
Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: Proceedings of the 26th Annual Computer Security Applications Conference, pp. 1–9 (2010)
Sun, K., Lin, Z., Zhu, Z.: Adagcn: Adaboosting graph convolutional networks into deep models (2019). arxiv:1908.05081
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks (2017). arxiv:1710.10903
Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871. PMLR (2019)
Xu, K., Li, C., Tian, Y., Sonobe, T., ichi Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks (2018). arxiv:1806.03536
Ye, S., Tan, Z., Lei, Z., He, R., Wang, H., Zheng, Q., Luo, M.: Hofa: Twitter bot detection with homophily-oriented augmentation and frequency adaptive attention (2023). arxiv:2306.12870
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Shi, S., Li, Y., Liu, Z., Chen, C., Chen, J., Yan, B. (2025). Neighborhood Difference-Enhanced Graph Neural Network Based on Hypergraph for Social Bot Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15032. Springer, Singapore. https://doi.org/10.1007/978-981-97-8490-5_6
Download citation
DOI: https://doi.org/10.1007/978-981-97-8490-5_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8489-9
Online ISBN: 978-981-97-8490-5
eBook Packages: Computer ScienceComputer Science (R0)