Skip to main content

Lightweight and Multi-scale Adaptive Network for Infrared Small Target Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15043))

Included in the following conference series:

  • 137 Accesses

Abstract

Infrared small target detection (ISTD) technology is pivotal in both military and civilian sectors. Currently, detection methods based on deep learning have achieved certain results. However, there is still a lack of comprehensive interaction between features at different scales, resulting in the loss of some effective information and limiting the performance of the model. Moreover, some existing methods do not pay attention to parameter optimization, and the long model inference time fails to meet the lightweight and real-time requirements of actual scenarios. Therefore, we propose the lightweight and multi-scale adaptive network (LMANet). Firstly, we design the Residual Spatial and Channel Attention Refinement Block (RAR) in the feature extraction stage and combine it with the full-scale skip connections to maintain deep target features while processing redundant features to reduce the number of model parameters. Secondly, we design the bi-branch upsampling module (BU) to avoid image distortion caused by the loss of important information during the upsampling process. Additionally, we propose a layered iterative form of multi-scale deep adaptive supervision module (MSDAS) to fuse and supervise features of different scales to varying degrees to obtain accurate segmentation boundaries and improve detection performance. The intersection over union (IoU) of LMANet on the NUAA-SIRST and IRSTD-1k datasets is 78.06% and 66.12% respectively. Experimental results show that our method outperforms other methods.

Supported by the National Natural Science Foundation of China (No.61563049).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 01 November 2024

    A correction has been published.

References

  1. Chen, C.P., Li, H., Wei, Y., Xia, T., Tang, Y.Y.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574ā€“581 (2013)

    Article  MATH  Google Scholar 

  2. Chung, W.Y., Lee, I.H., Park, C.G.: Lightweight infrared small target detection network using full-scale skip connection u-net. IEEE Geosci. Remote Sens. Lett. (2023)

    Google Scholar 

  3. Dai, Y., Wu, Y., Zhou, F., Barnard, K.: Asymmetric contextual modulation for infrared small target detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 950ā€“959 (2021)

    Google Scholar 

  4. Han, J., Moradi, S., Faramarzi, I., Liu, C., Zhang, H., Zhao, Q.: A local contrast method for infrared small-target detection utilizing a tri-layer window. IEEE Geosci. Remote Sens. Lett. 17(10), 1822ā€“1826 (2019)

    Article  Google Scholar 

  5. Han, J., Moradi, S., Faramarzi, I., Zhang, H., Zhao, Q., Zhang, X., Li, N.: Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci. Remote Sens. Lett. 18(9), 1670ā€“1674 (2020)

    Article  MATH  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770ā€“778 (2016)

    Google Scholar 

  7. Hou, Q., Zhang, L., Tan, F., Xi, Y., Zheng, Li, N.: ISTDU-net: infrared small-target detection U-Net. IEEE Geosci. Remote Sens. Lett. 19, 1ā€“5 (2022)

    Google Scholar 

  8. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.W., Wu, J.: Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055ā€“1059. IEEE (2020)

    Google Scholar 

  9. Kong, X., Yang, C., Cao, S., Li, C., Peng, Z.: Infrared small target detection via nonconvex tensor fibered rank approximation. IEEE Trans. Geosci. Remote Sens. 60, 1ā€“21 (2021)

    MATH  Google Scholar 

  10. Li, B., Xiao, C., Wang, L., Wang, Y., Lin, Z., Li, M., An, W., Guo, Y.: Dense nested attention network for infrared small target detection. IEEE Trans. Image Process. 32, 1745ā€“1758 (2022)

    Article  MATH  Google Scholar 

  11. Li, B., Li, X., Li, S., Zhang, Y., Liu, K., Ma, J., Wu, D.: Cross-layer feature guided multiscale infrared small target detection. IEEE Geosci. Remote Sens. Lett. 21, 1ā€“5 (2024)

    Article  MATH  Google Scholar 

  12. Li, J., Wen, Y., He, L.: Scconv: spatial and channel reconstruction convolution for feature redundancy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6153ā€“6162 (2023)

    Google Scholar 

  13. Li, R., Shen, Y.: YOLOSR-IST: a deep learning method for small target detection in infrared remote sensing images based on super-resolution and YOLO. Signal Process. 208, 108962 (2023)

    Article  MATH  Google Scholar 

  14. Lu, Z., Liu, S., Yilahun, H., Hamdulla, A.: Infrared small target detection based on background estimation and scale fusion. 21, 1ā€“5 (2024)

    Google Scholar 

  15. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137ā€“1149 (2016)

    Article  MATH  Google Scholar 

  16. Tom, V.T., Peli, T., Leung, M., Bondaryk, J.E.: Morphology-based algorithm for point target detection in infrared backgrounds. 1954, 2ā€“11 (1993)

    Google Scholar 

  17. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3ā€“19 (2018)

    Google Scholar 

  18. Wu, X., Hong, D., Chanussot, J.: UIU-NET: U-Net in U-Net for infrared small object detection. IEEE Trans. Image Process. 32, 364ā€“376 (2022)

    Article  Google Scholar 

  19. Ying, X., Liu, L., Wang, Y., Li, R., Chen, N., Lin, Z., Sheng, W., Zhou, S.: Mapping degeneration meets label evolution: Learning infrared small target detection with single point supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15528ā€“15538 (2023)

    Google Scholar 

  20. Zhang, L., Peng, Z.: Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 11(4), 382 (2019)

    Article  MATH  Google Scholar 

  21. Zhang, M., Zhang, R., Yang, Y., Bai, H., Zhang, J., Guo, J.: ISNet: shape matters for infrared small target detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 877ā€“886 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askar Hamdulla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Liu, S., Yilahun, H., Hamdulla, A. (2025). Lightweight and Multi-scale Adaptive Network for Infrared Small Target Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15043. Springer, Singapore. https://doi.org/10.1007/978-981-97-8493-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8493-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8492-9

  • Online ISBN: 978-981-97-8493-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics