Skip to main content

SF-Gait: Two-Stage Temporal Compression Network for Learning Gait Micro-Motions and Cycle Patterns

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15045))

Included in the following conference series:

  • 166 Accesses

Abstract

Gait recognition plays a crucial role in long-distance, unconstrained identity verification. Silhouette-based methods are widely recognized for their accuracy but often utilize single-stage temporal compression techniques, such as global pooling, to condense sequence temporal information into fixed-length features. However, this approach restricts their ability to fully capture the dynamic temporal characteristics inherent in gait sequences. To address this, we introduce SF-Gait, a novel framework employing two-stage compression-leveraging a 3D CNN for micro-motion and a 2D CNN for gait cycle features. It then anchors dense short-term micro-motion features to representative 2D contour features, forming sparse sequences as the initial stage of temporal compression. A subsequent global temporal pooling method, akin to other approaches, serves as the second stage of compression, thereby yielding more representative temporal features. Our Spatio-Temporal Downsampling (ST-D) and Dual-stream Fusion Encoder (DFE) enhance gait modeling capabilities, achieving state-of-the-art performance on CASIA-B, OU-MVLP, and Gait3D datasets.

This research was supported by the National Natural Science Foundation of China under grant 62371350 and 62171324.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benedek, C., Gálai, B., Nagy, B., Jankó, Z.: Lidar-based gait analysis and activity recognition in a 4d surveillance system. IEEE Trans. Circ. Syst. Video Technol. 28(1), 101–113 (2016)

    Article  Google Scholar 

  2. Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8126–8133 (2019)

    Google Scholar 

  3. Del Din, S., Elshehabi, M., Galna, B., Hobert, M.A., Warmerdam, E., Suenkel, U., Brockmann, K., Metzger, F., Hansen, C., Berg, D., et al.: Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86(3), 357–367 (2019)

    Article  Google Scholar 

  4. Dou, H., Zhang, P., Su, W., Yu, Y., Li, X.: Metagait: learning to learn an Omni sample adaptive representation for gait recognition. In: European Conference on Computer Vision, pp. 357–374. Springer (2022)

    Google Scholar 

  5. Dou, H., Zhang, P., Su, W., Yu, Y., Lin, Y., Li, X.: Gaitgci: generative counterfactual intervention for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5578–5588 (2023)

    Google Scholar 

  6. Fan, C., Hou, S., Huang, Y., Yu, S.: Exploring deep models for practical gait recognition (2023). arXiv preprint arXiv:2303.03301

  7. Fan, C., Liang, J., Shen, C., Hou, S., Huang, Y., Yu, S.: Opengait: revisiting gait recognition towards better practicality. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9707–9716 (2023)

    Google Scholar 

  8. Fan, C., Peng, Y., Cao, C., Liu, X., Hou, S., Chi, J., Huang, Y., Li, Q., He, Z.: Gaitpart: temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)

    Google Scholar 

  9. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)

    Google Scholar 

  10. Gálai, B., Benedek, C.: Feature selection for Lidar-based gait recognition. In: 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), pp. 1–5. IEEE (2015)

    Google Scholar 

  11. Gupta, J.P., Singh, N., Dixit, P., Semwal, V.B., Dubey, S.R.: Human activity recognition using gait pattern. Int. J. Comput. Vis. Image Process. (IJCVIP) 3(3), 31–53 (2013)

    Google Scholar 

  12. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2005)

    Article  Google Scholar 

  13. Hou, S., Cao, C., Liu, X., Huang, Y.: Gait lateral network: learning discriminative and compact representations for gait recognition. In: European Conference on Computer Vision, pp. 382–398. Springer (2020)

    Google Scholar 

  14. Huang, X., Zhu, D., Wang, H., Wang, X., Yang, B., He, B., Liu, W., Feng, B.: Context-sensitive temporal feature learning for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12909–12918 (2021)

    Google Scholar 

  15. Huang, Z., Xue, D., Shen, X., Tian, X., Li, H., Huang, J., Hua, X.S.: 3d local convolutional neural networks for gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14920–14929 (2021)

    Google Scholar 

  16. Islam, M.A., Jia, S., Bruce, N.D.: How much position information do convolutional neural networks encode? In: International Conference on Learning Representations (2019)

    Google Scholar 

  17. Lin, B., Zhang, S., Yu, X.: Gait recognition via effective global-local feature representation and local temporal aggregation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14648–14656 (2021)

    Google Scholar 

  18. Liu, R., Lehman, J., Molino, P., Petroski Such, F., Frank, E., Sergeev, A., Yosinski, J.: An intriguing failing of convolutional neural networks and the coordconv solution. Adv. Neural Inform. Process. Syst. 31 (2018)

    Google Scholar 

  19. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0 (2019)

    Google Scholar 

  20. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2018)

    Article  Google Scholar 

  21. Takemura, N., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition. IPSJ Trans. Comput. Vis. Appl. 10, 1–14 (2018)

    Google Scholar 

  22. Teepe, T., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Towards a deeper understanding of skeleton-based gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1569–1577 (2022)

    Google Scholar 

  23. Teepe, T., Khan, A., Gilg, J., Herzog, F., Hörmann, S., Rigoll, G.: Gaitgraph: Graph convolutional network for skeleton-based gait recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2314–2318. IEEE (2021)

    Google Scholar 

  24. Wang, L., Liu, B., Liang, F., Wang, B.: Hierarchical spatio-temporal representation learning for gait recognition. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 19582–19592. IEEE (2023)

    Google Scholar 

  25. Wang, M., Guo, X., Lin, B., Yang, T., Zhu, Z., Li, L., Zhang, S., Yu, X.: DyGait: exploiting dynamic representations for high-performance gait recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13424–13433 (2023)

    Google Scholar 

  26. Wang, W., Liu, A.X., Shahzad, M.: Gait recognition using WiFi signals. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 363–373 (2016)

    Google Scholar 

  27. Wolf, T., Babaee, M., Rigoll, G.: Multi-view gait recognition using 3d convolutional neural networks. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 4165–4169. IEEE (2016)

    Google Scholar 

  28. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  29. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.: Deep learning for person re-identification: a survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 2872–2893 (2021)

    Article  Google Scholar 

  30. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 4, pp. 441–444. IEEE (2006)

    Google Scholar 

  31. Yue, Y., Zou, Q., Yu, H., Wang, Q., Wang, Z., Wang, S.: An end-to-end network for co-saliency detection in one single image. Sci. China Inf. Sci. 66(11), 210101 (2023)

    Google Scholar 

  32. Zheng, J., Liu, X., Liu, W., He, L., Yan, C., Mei, T.: Gait recognition in the wild with dense 3d representations and a benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20228–20237 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, Y., Wang, Y., Shi, L., Wang, Z., Zou, Q. (2025). SF-Gait: Two-Stage Temporal Compression Network for Learning Gait Micro-Motions and Cycle Patterns. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15045. Springer, Singapore. https://doi.org/10.1007/978-981-97-8499-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8499-8_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8498-1

  • Online ISBN: 978-981-97-8499-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics