Skip to main content

EBSD: Short Text Sentiment Classification Using Sentence Vector Enhancement Mechanism

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15033))

Included in the following conference series:

  • 258 Accesses

Abstract

Sentiment analysis has become an important topic in the field of natural language processing. Short text possesses multiple characteristics such as semantic sparsity and polysemy, which bring numerous challenges to short text sentiment analysis. Currently, the sentiment analysis of short text is insufficient and faces many problems such as feature semantics loss that may occur in the training process and the features that are used to classify with excessive dimension. Aiming at the existing problems, we proposed a short text sentiment classification model with a sentence vector enhancement mechanism (ERNIE-BiGRU-SVE-DPCNN, EBSD). This model uses Bi-GRU to extract the word order features of short text and uses DPCNN to reduce the dimension of features that are used for classification. Based on the group-wise enhancement mechanism, we proposed a Sentence Vector Enhancement Mechanism (SVE), which can enhance the features according to the sentence vector generated by ERNIE. The purpose of the SVE is to reduce the loss of semantic meanings. The result of experiments on the short text dataset online_shopping_10_cats has shown that the EBSD has higher accuracy than other baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Center, C.I.N.I.: The 51th China Statistical Report on Internet Development. Tech. rep., CNNIC, Beijing (2023)

    Google Scholar 

  2. Jia, W., Peng, J.: The public sentiment analysis of double reduction policy on Weibo platform. Computat. Intell. Neurosci. 2022 (2022)

    Google Scholar 

  3. Zhou, Z.G.: Research on sentiment analysis model of short text based on deep learning. Sci. Program. 2022 (2022)

    Google Scholar 

  4. Chen, Q., Sun, X., Wang, J., Wang, M.: User-based hierarchical network of Sina Weibo emotion analysis. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 22(5), 1–22 (2023)

    Article  Google Scholar 

  5. Yu, L., Duan, Y., Li, K.C.: A real-world service mashup platform based on data integration, information synthesis, and knowledge fusion. Connect. Sci. 33(3), 463–481 (2021)

    Article  Google Scholar 

  6. Dai, Y., Wang, T.: Prediction of customer engagement behaviour response to marketing posts based on machine learning. Connect. Sci. 33(4), 891–910 (2021)

    Article  Google Scholar 

  7. Xu, G., Yao, H., Wu, D., Li, Y., Ouyang, D., Chen, G.: Public opinion classification and text alignment based on Chinese and Tibetan corpus. Clust. Comput. 22, 10263–10274 (2019)

    Article  Google Scholar 

  8. Yang, Z., Wu, Q., Venkatachalam, K., Li, Y., Xu, B., Trojovskỳ, P.: Topic identification and sentiment trends in Weibo and Wechat content related to intellectual property in China. Technol. Forecast. Soc. Chang. 184, 121980 (2022)

    Article  Google Scholar 

  9. Zhou, Y., Li, J., Chi, J., Tang, W., Zheng, Y.: Set-CNN: a text convolutional neural network based on semantic extension for short text classification. Knowl.-Based Syst. 257, 109948 (2022)

    Article  Google Scholar 

  10. Cui, H., Wang, G., Li, Y., Welsch, R.E.: Self-training method based on GCN for semi-supervised short text classification. Inf. Sci. 611, 18–29 (2022)

    Article  Google Scholar 

  11. Wei, Z., Liu, W., Zhu, G., Zhang, S., Hsieh, M.Y.: Sentiment classification of Chinese Weibo based on extended sentiment dictionary and organisational structure of comments. Connect. Sci. 34(1), 409–428 (2022)

    Article  Google Scholar 

  12. Onan, A.: Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. J. King Saud Univ. Comput. Inf. Sci. 34(5), 2098–2117 (2022)

    Google Scholar 

  13. Naseem, U., Razzak, I., Musial, K., Imran, M.: Transformer based deep intelligent contextual embedding for twitter sentiment analysis. Futur. Gener. Comput. Syst. 113, 58–69 (2020)

    Article  Google Scholar 

  14. Pavan Kumar, M., Jayagopal, P.: Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM. J. Intell. Manuf. 34(5), 2123–2132 (2023)

    Article  Google Scholar 

  15. Zhang, B., Zhou, W.: Transformer-encoder-GRU (T-E-GRU) for Chinese sentiment analysis on Chinese comment text. Neural Process. Lett. 55(2), 1847–1867 (2023)

    Article  Google Scholar 

  16. Yan, C., Liu, J., Liu, W., Liu, X.: Research on public opinion sentiment classification based on attention parallel dual-channel deep learning hybrid model. Eng. Appl. Artif. Intell. 116, 105448 (2022)

    Article  Google Scholar 

  17. Sun, X., Huo, X.: Word-level and pinyin-level based Chinese short text classification. IEEE Access 10, 125552–125563 (2022)

    Article  Google Scholar 

  18. Yang, T., Hu, L., Shi, C., Ji, H., Li, X., Nie, L.: HGAT: heterogeneous graph attention networks for semi-supervised short text classification. ACM Trans. Inf. Syst. (TOIS) 39(3), 1–29 (2021)

    Article  Google Scholar 

  19. Jin, Z., Tao, M., Zhao, X., Hu, Y.: Social media sentiment analysis based on dependency graph and co-occurrence graph. Cogn. Comput. 14(3), 1039–1054 (2022)

    Article  Google Scholar 

  20. Li, Y., Li, N.: Sentiment analysis of Weibo comments based on graph neural network. IEEE Access 10, 23497–23510 (2022)

    Article  Google Scholar 

  21. Liu, W., Chen, X., Liu, J., Feng, S., Sun, Y., Tian, H., et al.: Ernie 3.0 tiny: frustratingly simple method to improve task-agnostic distillation generalization (2023). arXiv:2301.03416

  22. Dharma, E.M., Gaol, F.L., Warnars, H., Soewito, B.: The accuracy comparison among word2vec, glove, and fasttext towards convolution neural network (CNN) text classification. J. Theor. Appl. Inf. Technol. 100(2), 31 (2022)

    Google Scholar 

  23. Johnson, R., Zhang, T.: Deep pyramid convolutional neural networks for text categorization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 562–570. Association for Computational Linguistics, Vancouver, Canada (2017). https://doi.org/10.18653/v1/P17-1052. https://aclanthology.org/P17-1052

  24. Xu, D., Tian, Z., Lai, R., Kong, X., Tan, Z., Shi, W.: Deep learning based emotion analysis of microblog texts. Inf. Fusion 64, 1–11 (2020)

    Article  Google Scholar 

  25. Jiang, W., Zhou, K., Xiong, C., Du, G., Ou, C., Zhang, J.: KSCB: a novel unsupervised method for text sentiment analysis. Appl. Intell. 53(1), 301–311 (2023)

    Article  Google Scholar 

  26. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  27. Alsaleh, D., Larabi-Marie-Sainte, S.: Arabic text classification using convolutional neural network and genetic algorithms. IEEE Access 9, 91670–91685 (2021)

    Article  Google Scholar 

  28. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7370–7377 (2019)

    Google Scholar 

  29. Liu, R., Wang, H., Li, Y.: AgriMFLN: Mixing features LSTM networks for sentiment analysis of agricultural product reviews. Appl. Sci. 13(10), 6262 (2023)

    Article  Google Scholar 

  30. Cheng, W., Wang, Y., Li, L., Wang, S.: Classification of e-commerce reviews sentiment tendency based on ALBERT-SVM. In: EEI 2022; 4th International Conference on Electronic Engineering and Informatics, pp. 1–4 (2022)

    Google Scholar 

Download references

Acknowledgement

Supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region No. (2022001C427, 2022001C429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Zhang, L., Zhao, K., Maimaiti, M., Bi, X., Fan, H. (2025). EBSD: Short Text Sentiment Classification Using Sentence Vector Enhancement Mechanism. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15033. Springer, Singapore. https://doi.org/10.1007/978-981-97-8502-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8502-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8501-8

  • Online ISBN: 978-981-97-8502-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics