Skip to main content

Target-Specific Domain Adaptation via Geometry-Correlation Prediction for Point Cloud

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15034))

Included in the following conference series:

  • 153 Accesses

Abstract

Point cloud datasets suffer from a large domain discrepancy due to variations in data acquisition procedures, sensor perspectives, and realistic noise. To address this issue, domain adaptation technologies have emerged to improve scalability and generalization for point cloud models. We propose a novel method named GeoCo-TSDA (Geometry-Correlation Prediction and Target-Specific Domain Adaptation) which boosts the performance of domain adaptation with a geometry-correlation prediction task and a target-specific self-training strategy. We design a self-supervised task that predicts the geometry correlation, which is obtained by the covariance of the local point clusters and is related to a variety of geometric properties, enabling the model to learn more complete and robust features. Moreover, existing domain adaptation methods commonly focus on aligning feature space among domains. However, owing to the internal distribution gap among domains, merely aligning features at the domain level falls short of achieving optimal performance for the target domain. We tackle this problem by adding a target domain specific training procedure that focuses on further adapting the model to fit the internal distribution of the target domain. For the rationality of our method, we provide theoretical and empirical analysis. For the effectiveness of our method, we conduct experiments on commonly used benchmark PointDA-10 and GraspNetPC-10, and on both datasets our model achieves SOTA performance among point cloud domain adaptation methods and considerable elevation compared to the baseline model.

Junqiao Li and Leyan Zhu—The first two authors contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achituve, I., Maron, H., Chechik, G.: Self-supervised learning for domain adaptation on point clouds. In: WACV, pp. 123–133 (2021)

    Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. NeurIPS 19 (2006)

    Google Scholar 

  3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

  4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: CVPR, pp. 5828–5839 (2017)

    Google Scholar 

  5. Fan, H., Chang, X., Zhang, W., Cheng, Y., Sun, Y., Kankanhalli, M.: Self-supervised global-local structure modeling for point cloud domain adaptation with reliable voted pseudo labels. In: CVPR, pp. 6377–6386 (2022)

    Google Scholar 

  6. Fang, H.S., Wang, C., Gou, M., Lu, C.: Graspnet-1billion: a large-scale benchmark for general object grasping. In: CVPR, pp. 11444–11453 (2020)

    Google Scholar 

  7. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3d scene understanding with contrastive scene contexts. In: CVPR, pp. 15587–15597 (2021)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M.A., Cao, D., Li, J.: Deep learning for lidar point clouds in autonomous driving: a review. TNNLS 32(8), 3412–3432 (2020)

    Google Scholar 

  10. Liang, H., Fan, H., Fan, Z., Wang, Y., Chen, T., Cheng, Y., Wang, Z.: Point cloud domain adaptation via masked local 3d structure prediction. In: ECCV, pp. 156–172. Springer (2022)

    Google Scholar 

  11. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: CVPR, pp. 8895–8904 (2019)

    Google Scholar 

  12. Maturana, D., Scherer, S.: Voxnet: a 3d convolutional neural network for real-time object recognition. In: IROS, pp. 922–928. IEEE (2015)

    Google Scholar 

  13. Pan, F., Shin, I., Rameau, F., Lee, S., Kweon, I.S.: Unsupervised intra-domain adaptation for semantic segmentation through self-supervision. In: CVPR, pp. 3764–3773 (2020)

    Google Scholar 

  14. Park, J., Seo, H., Yang, E.: Pc-adapter: Topology-aware adapter for efficient domain adaption on point clouds with rectified pseudo-label. In: ICCV, pp. 11530–11540 (2023)

    Google Scholar 

  15. Poursaeed, O., Jiang, T., Qiao, H., Xu, N., Kim, V.G.: Self-supervised learning of point clouds via orientation estimation. In: 3DV, pp. 1018–1028. IEEE (2020)

    Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  17. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view cnns for object classification on 3d data. In: CVPR, pp. 5648–5656 (2016)

    Google Scholar 

  18. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. NeurIPS 30 (2017)

    Google Scholar 

  19. Qin, C., You, H., Wang, L., Kuo, C.C.J., Fu, Y.: Pointdan: a multi-scale 3d domain adaption network for point cloud representation. NeurIPS 32 (2019)

    Google Scholar 

  20. Sauder, J., Sievers, B.: Self-supervised deep learning on point clouds by reconstructing space. NeurIPS 32 (2019)

    Google Scholar 

  21. Shen, Y., Yang, Y., Yan, M., Wang, H., Zheng, Y., Guibas, L.J.: Domain adaptation on point clouds via geometry-aware implicits. In: CVPR, pp. 7223–7232 (2022)

    Google Scholar 

  22. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: ICCV, pp. 945–953 (2015)

    Google Scholar 

  23. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: CVPR, pp. 2517–2526 (2019)

    Google Scholar 

  24. Wang, H., Liu, Q., Yue, X., Lasenby, J., Kusner, M.J.: Unsupervised point cloud pre-training via occlusion completion. In: ICCV, pp. 9782–9792 (2021)

    Google Scholar 

  25. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. TOG 38(5), 1–12 (2019)

    Article  Google Scholar 

  26. Wu, W., Qi, Z., Fuxin, L.: Pointconv: deep convolutional networks on 3d point clouds. In: CVPR, pp. 9621–9630 (2019)

    Google Scholar 

  27. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015)

    Google Scholar 

  28. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: Pointcontrast: unsupervised pre-training for 3d point cloud understanding. In: ECCV, pp. 574–591. Springer (2020)

    Google Scholar 

  29. Zhang, Y., Lin, J., He, C., Chen, Y., Jia, K., Zhang, L.: Masked surfel prediction for self-supervised point cloud learning. arXiv preprint arXiv:2207.03111 (2022)

  30. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any point-cloud. In: ICCV, pp. 10252–10263 (2021)

    Google Scholar 

  31. Zou, L., Tang, H., Chen, K., Jia, K.: Geometry-aware self-training for unsupervised domain adaptation on object point clouds. In: ICCV, pp. 6403–6412 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2023YFC3306401), National Natural Science Foundation of China (62032016, 62141604), Beijing Nova Program (20220484106, 20230484451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 160 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Zhu, L., Wang, T., Xie, Y., Shi, J., Snoussi, H. (2025). Target-Specific Domain Adaptation via Geometry-Correlation Prediction for Point Cloud. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8505-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8504-9

  • Online ISBN: 978-981-97-8505-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics