Skip to main content

Semi-supervised Lightweight Fabric Defect Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15034))

Included in the following conference series:

  • 149 Accesses

Abstract

Fabric defect detection can greatly enhance the quality of fabric production. However, the high cost of annotating defects and the computational complexity of networks are the main challenges in defect detection. To address these challenges, this paper proposes a semi-supervised lightweight fabric defect detection algorithm (SDA-Net). During the semi-supervised training process, the algorithm uses labeled defect samples and normal samples to learn latent features and detect defect positions accurately. First, to solve the issue of insufficient labeled defect samples due to high annotation costs, a data augmentation method called Sel-fill is proposed. The Sel-fill randomly samples image blocks of various sizes from a truncated normal distribution. These image blocks are then inserted into random positions within normal images, thereby generating labeled defect samples. Second, A lightweight neural network architecture is constructed using depth-wise separable convolution (DSConv). This architecture effectively reduces the number of parameters and computations while maintaining performance. Final, the max pooling coordinate attention mechanism (MpCA) effectively suppresses background noise during the multi-scale feature fusion process, resulting in improved detection precision. By using depth-wise separable convolution and MpCA attention, SDA-Net achieves an average detection precision of 62.6%, improved by 4.5% over the previous method. The number of trainable parameters is only 9.35 MB, reduced by 42.53%. Moreover, the computations are reduced by 68.84%.

Supported by the Basic Science (Natural Science) Research Projects of Universities in Jiangsu Province (Grant No.22KJB520011).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao, X., Liang, J., Xia, Y., Hou, Z., Huan, Z.: Low-rank decomposition fabric defect detection based on prior and total variation regularization. Vis. Comput. 38(8), 2707–2721 (2022)

    Article  Google Scholar 

  2. Cheng, L., Yi, J., Chen, A., Zhang, Y.: Fabric defect detection based on separate convolutional UNet. Multimedia Tools Appl. 82(2), 3101–3122 (2023)

    Article  Google Scholar 

  3. Gu, M., Zhou, J., Pan, R., Gao, W.: Unsupervised defect segmentation on denim fabric via local patch prediction and residual fusion. Text. Res. J. 93(15–16), 3573–3587 (2023)

    Article  Google Scholar 

  4. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. Comput. Vision Pattern Recogn. 13713–13722 (2021)

    Google Scholar 

  5. Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., Huang, X.: Unsupervised fabric defect detection based on a deep convolutional generative adversarial network. Text. Res. J. 90(3–4), 247–270 (2020)

    Article  Google Scholar 

  6. Ji, X., Liang, J., Di, L., Xia, Y., Hou, Z., Huan, Z., Huan, Y.: Fabric defect fetection via weighted low-rank decomposition and Laplacian regularization. J. Eng. Fibers Fabr. 15(5), 1558925020957654 (2020)

    Google Scholar 

  7. Jing, J., Wang, Z., Rätsch, M., Zhang, H.: Mobile-Unet: an efficient convolutional neural network for fabric defect detection. Text. Res. J. 92(1–2), 30–42 (2022)

    Article  Google Scholar 

  8. Khanzhina, N., Kashirin, M., Filchenkov, A.: Monte Carlo concrete DropPath for epistemic uncertainty estimation in brain tumor segmentation. In: Lecture Notes in Computer Science, pp. 64–74 (2021)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25(2), 1097–1105 (2012)

    Google Scholar 

  10. Kumar, D.D., Fang, C., Zheng, Y., Gao, Y.: Semi-supervised transfer learning-based automatic weld defect detection and visual inspection. Eng. Struct. 292(10–1), 116580 (2023)

    Google Scholar 

  11. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Google Scholar 

  12. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: Self-supervised learning for anomaly detection and localization. Comput. Vision Pattern Recogn. 9664–9674 (2021)

    Google Scholar 

  13. Li, C., Gao, G., Liu, Z., Huang, D., Xi, J.: Defect detection for patterned fabric images based on GHOG and low-rank decomposition. IEEE Access 7(99), 83962–83973 (2019)

    Article  Google Scholar 

  14. Li, Z., Tian, X., Liu, X., Liu, Y., Shi, X.: A two-stage industrial defect detection framework based on improved-yolov5 and optimized-inception-resnetv2 models. Appl. Sci. 12(2), 834 (2022)

    Article  Google Scholar 

  15. Liu, B., Wang, H., Cao, Z., Wang, Y., Tao, L., Yang, J., Zhang, K.: PRC-Light YOLO: an efficient lightweight model for fabric defect detection. Appl. Sci. 14(2), 938 (2024)

    Article  Google Scholar 

  16. Peng, P., Wang, Y., Hao, C., Zhu, Z., Liu, T., Zhou, W.: Automatic fabric defect detection method using PRAN-net. Appl. Sci. 10(23), 8434 (2020)

    Article  Google Scholar 

  17. Ren, M., Shen, R., Gong, Y.: A surface defect detection method via fusing multi-level features. J. Comput. Inf. Sci. Eng. 22(5), 051005 (2022)

    Google Scholar 

  18. Shi, W., Wang, W., Zhu, L., Wu, K., Wu, J.: Clustering-Based Cycle Gan for Fabric Defect Detection. Social Science Electronic Publishing (2022)

    Google Scholar 

  19. Tang, S., Jin, Z., Zhang, Y., Lu, J., Li, H., Yang, J.: A timestep-adaptive-diffusion-model-oriented unsupervised detection method for fabric surface defects. Processes 11(9), 2615 (2023)

    Article  Google Scholar 

  20. Wang, Y., Luo, S., Wu, H.: Retracted: Defect detection of solar cell based on data augmentation. J. Phys. Conf. Ser. 1952, 022010 (2021)

    Google Scholar 

  21. Wei, C., Liang, J., Liu, H., Hou, Z., Huan, Z.: Multi-stage unsupervised fabric defect detection based on DCGAN. Vis. Comput. 39(12), 6655–6671 (2023)

    Article  Google Scholar 

  22. Xiao, H., Zhao, C., Zhang, Z., et al.: A semi-supervised method for steel surface defect detection based on soft-teacher. J. Comput. Inf. Sci. Eng. 6(3), 11–19 (2023)

    Google Scholar 

  23. Yang, M., Wu, P., Feng, H.: Memseg: A semi-supervised method for image surface defect detection using differences and commonalities. Eng. Appl. Artif. Intell. 119, 105835 (2023)

    Google Scholar 

  24. Yao, H., Yu, W., Wang, X.: A feature memory rearrangement network for visual inspection of textured surface defects toward edge intelligent manufacturing. IEEE Trans. Autom. Sci. Eng. (2022)

    Google Scholar 

  25. Yi, C., Xu, B., Chen, J., Chen, Q., Zhang, L.: An improved yolox model for detecting strip surface defects. Steel Res. Int. 93(11), 2200505 (2022)

    Google Scholar 

  26. Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. Comput. Vis. Pattern Recogn. 8330–8339 (2021)

    Google Scholar 

  27. Zhang, H., Tan, Q., Lu, S., Ge, Z., Gu, D.: Yarn-dyed fabric defect detection using u-shaped de-noising convolutional auto-encoder. In: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, pp. 18–24 (2020)

    Google Scholar 

  28. Zhao, S., Yin, L., Zhang, J., Wang, J., Zhong, R.: Real-time fabric defect detection based on multi-scale convolutional neural network. IET Collab. Intell. Manuf. 2(4), 189–196 (2020)

    Article  Google Scholar 

  29. Zhou, K., Deng, K., Chen, P., Hu, Y.: An improved lightweight network based on mobilenetv3 for palmprint recognition. In: Chinese Conference on Pattern Recognition and Computer Vision, pp. 749–761 (2022)

    Google Scholar 

  30. Zhou, Q., Mei, J., Zhang, Q., Wang, S., Chen, G.: Semi-supervised fabric defect detection based on image reconstruction and density estimation. Text. Res. J. 91(9–10), 962–972 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, X., Liu, H., Luo, Y., Yan, Y., Liang, J. (2025). Semi-supervised Lightweight Fabric Defect Detection. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8505-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8504-9

  • Online ISBN: 978-981-97-8505-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics