Skip to main content

Cross Modality Fusion Network with Feature Alignment and Salient Object Exchange for Single Image 3D Shape Retrieval

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15036))

Included in the following conference series:

  • 171 Accesses

Abstract

The image-based 3D shape retrieval (IBSR) aims to retrieve 3D shapes that are similar to the query image. Most methods consider metric learning, which involves mapping images and 3D shapes to a low-dimensional space. This enables greater similarity between images and 3D shapes of the same instance, while images and 3D shapes of different instances are dissimilar. However, most existing methods do not consider the fusion of information across modalities. By leveraging complementary knowledge contained in different modalities, integrating data from different modalities into a single representation comprehensively represents the data, which enhances the data representation capability and thus facilitates retrieval. Therefore we propose a new method that takes into account information across different modalities. Firstly, we introduce a cross modality fusion network. The cross modality fusion network is primarily an attention mechanism network. By employing this attention mechanism network to fuse modal information, the network can determine the probability of similarity between the input query image and 3D shape. Secondly, to alleviate the difficulty of modal fusion, we propose a feature alignment module based on contrastive learning. This module includes instance discrimination and cross domain feature alignment modules, which align features before modal fusion. Finally, we propose salient object exchange, which further assists in modal fusion. Experiments on three commonly used datasets, i.e., Pix3D, Stanford Cars, and Comp Cars, demonstrates the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry, M., Russell, B.C.: Understanding deep features with computer-generated imagery. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2875–2883 (2015)

    Google Scholar 

  2. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: an information-rich 3D model repository (2015). arXiv preprint arXiv:1512.03012

  3. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 264–272 (2018)

    Google Scholar 

  4. Fu, H., Li, S., Jia, R., Gong, M., Zhao, B., Tao, D.: Hard example generation by texture synthesis for cross-domain shape similarity learning. Adv. Neural. Inf. Process. Syst. 33, 14675–14687 (2020)

    Google Scholar 

  5. Gao, X.Y., Li, K.P., Zhang, C.X., Yu, B.: 3D model classification based on Bayesian classifier with AdaBoost. Discret. Dyn. Nat. Soc. 2021, 1–12 (2021)

    Google Scholar 

  6. Gao, Z., Zhang, Y., Zhang, H., Guan, W., Feng, D., Chen, S.: Multi-level view associative convolution network for view-based 3D model retrieval. IEEE Trans. Circ. Syst. Video Technol. 32(4), 2264–2278 (2021)

    Article  Google Scholar 

  7. Grabner, A., Roth, P.M., Lepetit, V.: 3D pose estimation and 3D model retrieval for objects in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3022–3031 (2018)

    Google Scholar 

  8. Grabner, A., Roth, P.M., Lepetit, V.: Location field descriptors: single image 3D model retrieval in the wild. In: 2019 International Conference on 3D vision (3DV), pp. 583–593. IEEE (2019)

    Google Scholar 

  9. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  10. Guo, Q., He, F., Fan, B., Song, Y., Dai, J., Fan, L.: Walkformer: 3D mesh analysis via transformer on random walk. Neural Comput. Appl. 36(7), 3499–3511 (2024)

    Article  Google Scholar 

  11. Hamdi, A., Giancola, S., Ghanem, B.: MVTN: multi-view transformation network for 3D shape recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2021)

    Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  13. Hu, N., Zhou, H., Huang, X., Li, X., Liu, A.A.: A feature transformation framework with selective pseudo-labeling for 2D image-based 3D shape retrieval. IEEE Trans. Circ. Syst. Video Technol. 32(11), 8010–8021 (2022)

    Article  Google Scholar 

  14. Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q., Sung, Y.H., Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  15. Kanezaki, A., Matsushita, Y., Nishida, Y.: Rotationnet: joint object categorization and pose estimation using multiviews from unsupervised viewpoints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5010–5019 (2018)

    Google Scholar 

  16. Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., Krishnan, D.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  17. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. Adv. Neural. Inf. Process. Syst. 34, 9694–9705 (2021)

    Google Scholar 

  18. Li, T.B., Liu, A.A., Song, D., Li, W.H., Li, X.Y., Su, Y.T.: Focus on hard samples: hierarchical unbiased constraints for cross-domain 3D model retrieval. IEEE Trans. Circ. Syst. Video Technol. (2023)

    Google Scholar 

  19. Li, T.B., Su, Y.T., Song, D., Li, W.H., Wei, Z.Q., Liu, A.A.: Progressive Fourier adversarial domain adaptation for object classification and retrieval. IEEE Trans. Multimedia (2023)

    Google Scholar 

  20. Li, W., Zhang, Y., Wang, F., Li, X., Duan, Y., Liu, A.A.: Instance-prototype similarity consistency for unsupervised 2D image-based 3D model retrieval. Inform. Process. Manag. 60(4), 103372 (2023)

    Google Scholar 

  21. Li, Z., Seah, H.S., Guo, B., Yang, M.: MLGPnet: multi-granularity neural network for 3D shape recognition using pyramid data. Comput. Vis. Image Underst. 239, 103904 (2024)

    Google Scholar 

  22. Lin, M.X., Yang, J., Wang, H., Lai, Y.K., Jia, R., Zhao, B., Gao, L.: Single image 3D shape retrieval via cross-modal instance and category contrastive learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11405–11415 (2021)

    Google Scholar 

  23. Liu, A.A., Zhang, Y., Zhang, C., Li, W., Lv, B., Lei, L., Li, X.: Prototype-based semantic consistency learning for unsupervised 2D image-based 3D shape retrieval. Multimedia Syst. 29(4), 1995–2007 (2023)

    Article  Google Scholar 

  24. Liu, H., Tian, S.: Deep 3D point cloud classification and segmentation network based on GateNet. Vis. Comput. 40(2), 971–981 (2024)

    Article  Google Scholar 

  25. Maturana, D., Scherer, S.: Voxnet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  26. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  27. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  28. Song, D., Jiang, X.J., Zhang, Y., Zhang, F.L., Jin, Y., Zhang, Y.: Domain-specific modeling and semantic alignment for image-based 3D model retrieval. Comput. Graph. 115, 25–34 (2023)

    Article  Google Scholar 

  29. Song, D., Yang, Y., Li, W., Shao, Z., Nie, W., Li, X., Liu, A.A.: Adaptive semantic transfer network for unsupervised 2D image-based 3D model retrieval. Comput. Vis. Image Underst. 238, 103858 (2024)

    Google Scholar 

  30. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  31. Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J.B., Freeman, W.T.: Pix3D: dataset and methods for single-image 3D shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2974–2983 (2018)

    Google Scholar 

  32. Wang, Y., Tan, X., Yang, Y., Liu, X., Ding, E., Zhou, F., Davis, L.S.: 3D pose estimation for fine-grained object categories. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, pp. 0–0 (2018)

    Google Scholar 

  33. Wei, X., Yu, R., Sun, J.: Learning view-based graph convolutional network for multi-view 3D shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  34. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  35. Xu, S., Zhou, X., Ye, W., Ye, Q.: Classification of 3D point clouds by a new augmentation convolutional neural network. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  36. Xu, X., Todorovic, S.: Beam search for learning a deep convolutional neural network of 3D shapes. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 3506–3511. IEEE (2016)

    Google Scholar 

  37. Xuan, H., Stylianou, A., Pless, R.: Improved embeddings with easy positive triplet mining. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2474–2482 (2020)

    Google Scholar 

  38. Xue, L., Gao, M., Xing, C., Martín-Martín, R., Wu, J., Xiong, C., Xu, R., Niebles, J.C., Savarese, S.: ULIP: learning a unified representation of language, images, and point clouds for 3D understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1179–1189 (2023)

    Google Scholar 

  39. Yang, J., Duan, J., Tran, S., Xu, Y., Chanda, S., Chen, L., Zeng, B., Chilimbi, T., Huang, J.: Vision-language pre-training with triple contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15671–15680 (2022)

    Google Scholar 

  40. Zhang, Y., Lu, H.: Deep cross-modal projection learning for image-text matching. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 686–701 (2018)

    Google Scholar 

  41. Zhou, Y., Liu, Y., Song, D., Li, J., Li, X., Liu, A.A.: Cross-domain prototype contrastive loss for few-shot 2D image-based 3D model retrieval. In: 2023 IEEE International Conference on Multimedia and Expo (ICME), pp. 2897–2902. IEEE (2023)

    Google Scholar 

  42. Zhou, Y., Liu, Y., Xiao, J., Liu, M., Li, X., Liu, A.A.: Unsupervised self-training correction learning for 2D image-based 3D model retrieval. Inform. Process. Manag. 60(4), 103351 (2023)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62102163) and the Development Program Project of Youth Innovation Team of Institutions of Higher Learning in Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, Z., Niu, D., Han, X., Zhao, X. (2025). Cross Modality Fusion Network with Feature Alignment and Salient Object Exchange for Single Image 3D Shape Retrieval. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15036. Springer, Singapore. https://doi.org/10.1007/978-981-97-8508-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8508-7_33

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8507-0

  • Online ISBN: 978-981-97-8508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics