Skip to main content

Vision Paper for Enabling Generative AI Digital Platform Using AIDAF in Healthcare and Manufacturing Industry

  • Conference paper
  • First Online:
Human Centred Intelligent Systems (KES-HCIS 2024)

Abstract

Enterprises and information societies currently face significant challenges. Society 5.0 aims to contribute to a super-smart society, particularly in the critical healthcare and Industry 4.0 sectors of the global manufacturing industry. Generative artificial intelligence (AI) digital platforms have been designed to improve healthcare processes for patients with various diseases and help control costs in the healthcare ecosystem and manufacturing companies. However, current digital enterprise architecture approaches have not fully realized their potential, especially in the healthcare and manufacturing sectors. In this paper, we propose the adaptive integrated digital architecture framework (AIDAF) with a Generative AI integrated digital platform for university hospitals in Asia and the Americas, as well as global healthcare and manufacturing companies in Europe and Asia. Additionally, we discuss the challenges and future activities in this area, covering the directions for Society 5.0 and Industry 4.0. We suggest that an open healthcare platform, “Digital Strategic Architecture & Open Healthcare Platform 2030—DSA&OHP2030,” can be developed with AIDAF for Generative AI digital platforms. Furthermore, we explain the vision of AIDAF applications to enable Generative AI digital platforms for Society 5.0 in the DSA&OHP2030 research initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Towara, T., Anderl, R.: Topological approach for mapping technologies in reference architectural model Industrie 4.0 (RAMI 4.0). In: Proceedings of the World Congress on Engineering and Computer Science (2017)

    Google Scholar 

  2. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative Industrie 4.0. Securing the future of German manufacturing industry [Online] (2013)

    Google Scholar 

  3. Boardman, S., Harrington, E.: Snapshot-Open Platform 3.0™. The Open Group (2015)

    Google Scholar 

  4. Alwadain, A., Fielt, E., Korthaus, A., Rosemann, M.: A comparative analysis of the integration of SOA elements in widely-used enterprise architecture frameworks. Int. J. Intell. Inf. Technol. 54–70 (2014)

    Google Scholar 

  5. Buckl, S., Matthes, F., Schulz, C., Schweda, C.M.: Exemplifying a framework for interrelating EA concerns. In: Sicilia, M.A., Kop, C., Sartori, F. , (eds.), Ontology, Conceptualization and Epistemology for Information Systems, Software Engineering and Service Science, pp. 33–46. Springer, Berlin (2010)

    Google Scholar 

  6. Masuda, Y., Shirasaka, S., Yamamoto, S., Hardjono, T.: International journal of enterprise information systems. IGI Global 13, 1–22 (2017)

    MATH  Google Scholar 

  7. Masuda, Y., Shirasaka, S., Yamamoto, S., Hardjono, T.: Architecture board practices in adaptive enterprise architecture with digital platform: A case of global healthcare enterprise international journal of enterprise information systems. IGI Global 14, 1 (2018)

    Google Scholar 

  8. Aceto, G., Persico, V., Pescapéa, A.: The role of information and communication technologies in healthcare: taxonomies, perspectives, and challenges. J. Netw. Comput. Appl. 107, 125–154 (2018)

    Article  MATH  Google Scholar 

  9. Archenaa, J., Anita, E.M.: A survey of big data analytics in healthcare and government. Procedia Comput. Sci. 50, 408–413 (2015)

    Article  MATH  Google Scholar 

  10. Chawla, N.V., Davis, D.A.: Bringing big data to personalized healthcare: a patient-centered framework. J. Gen. Intern. Med. 28, 660–665 (2013)

    Article  MATH  Google Scholar 

  11. Osmani, V., Balasubramaniam, S., Botvich, D.: Human activity recognition in pervasive health-care: supporting efficient remote collaboration. J. Netw. Comput. Appl. 31, 628–655 (2008)

    Article  MATH  Google Scholar 

  12. Jee, K., Kim, G.-H.: Potentiality of big data in the medical sector: focus on how to reshape the healthcare system. Healthcare Inf. Res. 19, 79–85 (2013)

    Article  MATH  Google Scholar 

  13. Patel, P., Cassou, D.: Enabling high-level application development for IoT. J. Syst. Softw. Elsevier 1–26 (2015)

    Google Scholar 

  14. Familiar, B.: Microservices, IoT and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions. Berkeley (2015)

    Google Scholar 

  15. Gill, A.Q.: (2015) “Adaptive cloud enterprise architecture. In: Intelligent Information Systems, vol. 4. World Scientific Publishing Co., Singapore

    Google Scholar 

  16. The Open Group. TOGAF Version 9.1: Van Haren Publishing (2011)

    Google Scholar 

  17. Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D.: Digital enterprise architecture – transformation for the internet of things. In: Enterprise Distributed Object Computing Workshop (EDOCW), IEEE 19th International (2015)

    Google Scholar 

  18. Couturier, J., Sola, D., Borioli, G.S., Raiciu, C.: How can the internet of things help to overcome current healthcare challenges. Commun. Strat. 87, 67–81 (2012)

    Google Scholar 

  19. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

    Article  MATH  Google Scholar 

  20. Yeole, A.S., Kalbande, D.: Use of internet of things (iot) in healthcare: a survey. In: Proceedings of the ACM Symposium on Women in Research, pp. 71–76 (2016)

    Google Scholar 

  21. Masuda, Y., Zimmermann, A., Viswanathan, M., Bass, M., Nakamura, O., Yamamoto, S.: Adaptive enterprise architecture for the digital healthcare industry: a digital platform for drug development. J. Inf. 12, 67 (2021). https://doi.org/10.3390/info12020067

    Article  Google Scholar 

  22. Garnier, J.-L., Bérubé, J., Hilliard, R.: Architecture Guidance Study Report 140430, ISO/IEC JTC 1/SC 7 Software and systems engineering (2014)

    Google Scholar 

  23. Tamm, T., Seddon, P.B., Shanks, G., Reynolds, P.: How does enterprise architecture add value to organizations? Commun. Assoc. Inf. Syst. 28, 10 (2011)

    MATH  Google Scholar 

  24. Chen, H.-M., Kazman, R., Perry, O.: From software architecture analysis to service engineering: an empirical study of methodology development for enterprise SOA implementation. IEEE Trans. Serv. Comput. 3, 145–160 (2014)

    Article  MATH  Google Scholar 

  25. MacKenzie, C.M, Laskey, K, McCabe, F., Brown, P.F., Metz, R.: Reference Model for SOA 1.0. (Technical Report), Advancing Open Standards for the Information Society (2006)

    Google Scholar 

  26. Newman, S.: Building Microservices: O'Reilly Media (2015)

    Google Scholar 

  27. Richards, M.: Microservices versus Service-Oriented Architecture, 1st edn. O'Reilly Media (2015)

    Google Scholar 

  28. Muhammad, K., Khan, M.N.A.: Augmenting mobile cloud computing through enterprise architecture: survey paper. Int. J. Grid Distrib. Comput. 8, 323–336 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gill, A.Q., Smith, S., Beydoun, G., Sugumaran, V.: Agile enterprise architecture: a case of a cloud technology-enabled government enterprise transformation. In: Proceedings of the 19th Pacific Asia Conference on Information Systems (PACIS), pp. 1–11 (2014)

    Google Scholar 

  30. Masuda, Y., Shirasaka, S., Yamamoto, S.: Integrating mobile IT/cloud into enterprise architecture: a comparative analysis. In: Proceedings of the 21th Pacific Asia Conference on Information Systems (PACIS), Paper 4 (2016)

    Google Scholar 

  31. Deguchi, A., Hirai, C., Matsuoka, H., Nakano, T.: Society 5.0. Singapore, Springer (2020)

    Google Scholar 

  32. Nedungadi, P., Jayakumar, A., Raman, R.: Personalized health monitoring system for managing well-being in rural areas. J. Netw. Comput. Appl. 42, 22

    Google Scholar 

  33. Shepard, D.S., Masuda, Y.: Digital financial incentives for improved population health in the Americas: In: Proceedings of the 8th International KES Conference on Innovation in Medicine and Healthcare. Springer (2020)

    Google Scholar 

  34. Liang, P.P., Liu, T., Cai, A., Muszynski, M., Ishii, R., Allen, N., Auerbach, R., Brent, D., Salakhutdinov, R., Morency, L.P.: Learning language and multimodal privacy-preserving markers of mood from mobile data. arXiv preprint arXiv:2106.13213 (2021)

  35. Shortliffe, E.H. Biomedical informatics: defining the science and its role in health professional education. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C. (eds.), Information Quality in e-Health. Lecture Notes in Computer Science, pp. 711–714. Springer, Berlin (2011)

    Google Scholar 

  36. Biswas, S.: Enterprise GENERATIVE AI Well Architected Framework and Patterns: An Architect’s Real-life Guide to Adopting Generative AI in Enterprises at Scale, USA, 2023; pp. 179–267 (2023)

    Google Scholar 

  37. Kulkarni, A., Shivananda, A., Kulkarni, A., Gudivada, D.: Applied Generative AI for Beginners Practical Knowledge on Diffusion Models, ChatGPT, other LLMs, pp.1–13. Apress, Inc. (2023)

    Google Scholar 

  38. Laranjo, L., Dunn, A.G., Tong, H.L., Kocaballi, A.B., Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi, F., Lau, A.Y., Coiera, E.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inf. Assoc. 25(9), 1248–1258 (2018).

    Google Scholar 

  39. Bickmore, T., Giorgino, T.: Health dialog systems for patients and consumers. J. Biomed. Inf. 39(5), 556–571 (2006)

    Article  Google Scholar 

  40. Sahoo, P.K., Mohapatra, S.K., Wu, S.L.: Analyzing healthcare big data with prediction for future health condition. IEEE Access 4, 9786–9799 (2016)

    Google Scholar 

  41. Masuda, Y., Zimmermann, A., Shepard, D.S., Schmidt, R., Shirasaka, S.: An adaptive enterprise architecture design for a digital healthcare platform: toward digitized society–industry 4.0, society 5.0. In: 2021 IEEE 25th International Enterprise Distributed Object Computing Workshop (EDOCW), pp. 138–146. IEEE (2021)

    Google Scholar 

  42. Cabinet Office. Society 5.0: Examples of Creating New Value in the Fields of Healthcare and Caregiving. https://www8.cao.go.jp/cstp/english/society5_0/medical_e.html

  43. Piest, J.P.S., Masuda, Y., Nakamura, O.: Healthcare under society 5.0: a systematic literature review of applications and case studies. Innovation in medicine and healthcare. In: KES InMed 2023. Smart Innovation, Systems and Technologies, vol. 357. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-3311-2_8

  44. Ali, H., Qadir, J., Alam, T., Househ, M., Shah, Z.: ChatGPT and large language models in healthcare: opportunities and risks. In: 2023 IEEE International Conference on Artificial Intelligence, Blockchain, and Internet of Things (AIBThings), Mount Pleasant, MI, USA, 2023, pp. 1–4 (2023). https://doi.org/10.1109/AIBThings58340.2023.10291020

  45. Waisberg, E., Ong, J., Masalkhi, M., et al.: GPT-4: a new era of artificial intelligence in medicine. Ir. J. Med. Sci. 192, 3197–3200 (2023). https://doi.org/10.1007/s11845-023-03377-8

    Article  MATH  Google Scholar 

  46. Piest, J.P.S., Masuda, Y., Nakamura, O., Karaca, K.: Human-centred design thinking using the intelligence amplification design canvas and the adaptive integrated digital architecture framework. In: Human Centred Intelligent Systems. KES-HCIS 2023. Smart Innovation, Systems and Technologies, vol. 359. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-3424-9_15

  47. Segel, L.H., Hatami, H.: What is the board's role in managing generative AI? The Day's News, McKinsey & Company. January in 2024 (2024)

    Google Scholar 

  48. Baig, A., Blumberg, S., et al.: Technology's generational moment with generative AI: A CIO and CTO guide, McKinsey Digital, July in 2023 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimasa Masuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Masuda, Y. et al. (2025). Vision Paper for Enabling Generative AI Digital Platform Using AIDAF in Healthcare and Manufacturing Industry. In: Zimmermann, A., Schmidt, R., Jain, L.C., Howlett, R.J. (eds) Human Centred Intelligent Systems. KES-HCIS 2024. Smart Innovation, Systems and Technologies, vol 414. Springer, Singapore. https://doi.org/10.1007/978-981-97-8598-8_16

Download citation

Publish with us

Policies and ethics