Skip to main content

Frequency Adapter and Spatial Prompt Network for All-in-One Blind Image Restoration

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 243 Accesses

Abstract

Image restoration aims to obtain a high-quality image from a degraded one. For real-world applications, an increasing number of methods are moving towards addressing multiple degradations using a single model. However, most of these methods still require task-specific training and primarily extract information from the spatial domain. To overcome this challenge, we introduce a novel All-in-one network, FASPNet, which effectively incorporates both frequency and spatial information to handle various degradations, without requiring any degradation priors. Specifically, we propose a Frequency Refiner Module (FRM), which adaptively adjusts frequency representations and captures crucial global frequency information to facilitate better image restoration. Furthermore, to provide essential low-level information related to restoration, we introduce a Spatial Prompt Module (SPM), utilizing prompts to encode restoration-relevant spatial detail representations and abstract degradation patterns. Extensive experiments have demonstrated that our model outperforms other baseline models on multiple datasets for three common and challenging tasks: deraining, dehazing, and denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)

    Google Scholar 

  4. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: European Conference on Computer Vision, pp. 17–33. Springer (2022)

    Google Scholar 

  5. Chi, L., Tian, G., Mu, Y., Xie, L., Tian, Q.: Fast non-local neural networks with spectral residual learning. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2142–2151 (2019)

    Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In: 2007 IEEE International Conference on Image Processing, vol. 1, pp. I–313. IEEE (2007)

    Google Scholar 

  7. Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: Fd-gan: generative adversarial networks with fusion-discriminator for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10729–10736 (2020)

    Google Scholar 

  8. Fan, Q., Chen, D., Yuan, L., Hua, G., Yu, N., Chen, B.: A general decoupled learning framework for parameterized image operators. IEEE Trans. Pattern Anal. Mach. Intell. 43(1), 33–47 (2019)

    Article  Google Scholar 

  9. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3848–3856 (2019)

    Google Scholar 

  10. Guo, F., Fan, J., Li, J., Yang, J.: Enhanced frequency information for image dehazing. In: International Conference on Image and Graphics, pp. 216–228. Springer (2023)

    Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  12. Huang, J., et al.: Deep fourier-based exposure correction network with spatial-frequency interaction. In: European Conference on Computer Vision, pp. 163–180. Springer (2022)

    Google Scholar 

  13. Jiang, K., et al.: Multi-scale progressive fusion network for single image deraining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8346–8355 (2020)

    Google Scholar 

  14. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13919–13929 (2021)

    Google Scholar 

  15. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press (2004)

    Google Scholar 

  16. Kong, L., Dong, J., Ge, J., Li, M., Pan, J.: Efficient frequency domain-based transformers for high-quality image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5886–5895 (2023)

    Google Scholar 

  17. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)

    Google Scholar 

  18. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., Wang, Z.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for unknown corruption. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17452–17462 (June 2022)

    Google Scholar 

  20. Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175–3185 (2020)

    Google Scholar 

  21. Ma, K., Duanmu, Z., Wu, Q., Wang, Z., Yong, H., Li, H., Zhang, L.: Waterloo exploration database: new challenges for image quality assessment models. IEEE Trans. Image Process. 26(2), 1004–1016 (2016)

    Article  MathSciNet  Google Scholar 

  22. Mann, B., et al.: Language models are few-shot learners (2020). arXiv:2005.14165

  23. Mao, X., Liu, Y., Shen, W., Li, Q., Wang, Y.: Deep residual fourier transformation for single image deblurring (2021). CoRR, arXiv:abs/2111.11745

  24. Mao, X., Liu, Y., Shen, W., Li, Q., Wang, Y.: Deep residual fourier transformation for single image deblurring, 2(3), 5 (2021). arXiv:2111.11745

  25. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  26. Park, D., Lee, B.H., Chun, S.Y.: All-in-one image restoration for unknown degradations using adaptive discriminative filters for specific degradations. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5815–5824. IEEE (2023)

    Google Scholar 

  27. Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.: PromptIR: prompting for all-in-one image restoration. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=KAlSIL4tXU

  28. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160–8168 (2019)

    Google Scholar 

  29. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. Adv. Neural. Inf. Process. Syst. 34, 980–993 (2021)

    Google Scholar 

  30. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.H.: Single image dehazing via multi-scale convolutional neural networks. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 Oct 2016, Proceedings, Part II 14, pp. 154–169. Springer (2016)

    Google Scholar 

  31. Tian, C., Xu, Y., Zuo, W.: Image denoising using deep cnn with batch renormalization. Neural Netw. 121, 461–473 (2020)

    Article  Google Scholar 

  32. Wang, C., Jiang, J., Zhong, Z., Liu, X.: Spatial-frequency mutual learning for face super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22356–22366 (2023)

    Google Scholar 

  33. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)

    Google Scholar 

  34. Wang, W., Yang, W., Liu, J.: Hla-face: joint high-low adaptation for low light face detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16195–16204 (2021)

    Google Scholar 

  35. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general u-shaped transformer for image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17683–17693 (2022)

    Google Scholar 

  36. Wei, W., Meng, D., Zhao, Q., Xu, Z., Wu, Y.: Semi-supervised transfer learning for image rain removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3877–3886 (2019)

    Google Scholar 

  37. Xie, L., Wang, X., Dong, C., Qi, Z., Shan, Y.: Finding discriminative filters for specific degradations in blind super-resolution. Adv. Neural. Inf. Process. Syst. 34, 51–61 (2021)

    Google Scholar 

  38. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A fourier-based framework for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14383–14392 (2021)

    Google Scholar 

  39. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)

    Google Scholar 

  40. Yang, W., Yuan, Y., Ren, W., Liu, J., Scheirer, W.J., Wang, Z., Zhang, T., Zhong, Q., Xie, D., Pu, S., et al.: Advancing image understanding in poor visibility environments: a collective benchmark study. IEEE Trans. Image Process. 29, 5737–5752 (2020)

    Article  Google Scholar 

  41. Yasarla, R., Patel, V.M.: Uncertainty guided multi-scale residual learning-using a cycle spinning cnn for single image de-raining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8405–8414 (2019)

    Google Scholar 

  42. Yu, H., Zheng, N., Zhou, M., Huang, J., Xiao, Z., Zhao, F.: Frequency and spatial dual guidance for image dehazing. In: European Conference on Computer Vision, pp. 181–198. Springer (2022)

    Google Scholar 

  43. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5728–5739 (2022)

    Google Scholar 

  44. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14821–14831 (2021)

    Google Scholar 

  45. Zhang, C., Zhu, Y., Yan, Q., Sun, J., Zhang, Y.: All-in-one multi-degradation image restoration network via hierarchical degradation representation. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 2285–2293 (2023)

    Google Scholar 

  46. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 695–704 (2018)

    Google Scholar 

  47. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  48. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep cnn denoiser prior for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3929–3938 (2017)

    Google Scholar 

  49. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: toward a fast and flexible solution for cnn-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  50. Zhuang, Y., Zheng, Z., Lyu, C.: Dpfnet: a dual-branch dilated network with phase-aware fourier convolution for low-light image enhancement (2022). arXiv:2209.07937

Download references

Acknowledgement

This work was supported in part by the NSFC fund (NO. 62176077), in part by the Shenzhen Key Technical Project (NO. JSGG20220831092805009, JSGG20220831105603006, JSGG20201103153802006, KJZD20230923115117033), in part by the Guangdong International Science and Technology Cooperation Project (NO. 2023A0505050108), in part by the Shenzhen Fundamental Research Fund (NO. JCYJ20210324132210025), and in part by the Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies (NO. 2022B1212010005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Pei, W., Lu, Y., Lu, G. (2025). Frequency Adapter and Spatial Prompt Network for All-in-One Blind Image Restoration. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics