Skip to main content

RDSR:Reparameterized Lightweight Diffusion Model for Image Super-Resolution

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 160 Accesses

Abstract

The diffusion model has achieved impressive results on low-level tasks, recent studies attempt to design efficient diffusion models for Image Super-Resolution. However, they have mainly focused on reducing the number of parameters and FLops through various network designs. Although these methods can decrease the number of parameters and floating-point operations, they may not necessarily reduce actual running time. To enable DM inference faster on limited computational resources while retaining their quality and flexibility, we propose a Reparameterized Lightweight Diffusion Model SR network (RDSR), which consists of a Latent Prior Encoder (LPE), Reparameterized Decoder (RepD), and diffusion model conditioned on degraded images. Specifically, we first pretrain a LPE, it takes paired HR and LR patches as inputs, mapping input from pixel space to latent space. RepD has a VGG-like inference-time body composed of nothing but a stack of 3\(\times \)3 convolution and ReLU, while the training-time model has a multi-branch. Our diffusion model serve as a bridge between LPE and RepD: LPE employs distillation loss to supervise reverse diffusion process, the output of reverse process diffusion as a modulator to guide RepD to reconstruct high-quality results. RDSR can effectively reduce GPU memory consumption and improve inference speed. Extensive experiments on SR benchmarks demonstrate the superiority of our RDSR over state-of-the-art DM methods, e.g., RDSR-2.2M achieve 30.11 dB PSNR on DIV2K100 dataset that surpass equal-order DM-based models, while trading-off the parameter, efficiency, and accuracy well: running \({{\boldsymbol{55.8}}} \times \uparrow \) faster than DiffIR on Intel(R) Xeon(R) Platinum 8255C CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). pp. 1122–1131 (2017). https://doi.org/10.1109/CVPRW.2017.150

  2. Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)

    Google Scholar 

  3. Chen, X., Wang, X., Zhou, J., Dong, C.: Activating more pixels in image super-resolution transformer (2022). CoRR arXiv:abs/2205.04437

  4. Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: Fsrnet: End-to-end learning face super-resolution with facial priors. In: CVPR, pp. 2492–2501 (2018)

    Google Scholar 

  5. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. NeurIPS (2021)

    Google Scholar 

  6. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: Repvgg: making vgg-style convnets great again (2021). arXiv:2101.03697

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks (2015). CoRR arXiv:abs/1501.00092

  8. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: ECCV (2016)

    Google Scholar 

  9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. NeurIPS (2020)

    Google Scholar 

  10. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. JMLR (2022)

    Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

    Google Scholar 

  12. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  13. Kingma, D., Salimans, T., Poole, B., Ho, J.: Variational diffusion models. NeurIPS (2021)

    Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)

    Google Scholar 

  15. Li, H., et al.: Srdiff: single image super-resolution with diffusion probabilistic models. Neurocomputing (2022)

    Google Scholar 

  16. Li, W., Lu, X., Qian, S., Lu, J., Zhang, X., Jia, J.: On efficient transformer and image pre-training for low-level vision (2021). arXiv:2112.10175

  17. Li, W., Zhou, K., Qi, L., Lu, L., Lu, J.: Best-buddy gans for highly detailed image super-resolution. In: AAAI (2022)

    Google Scholar 

  18. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: ICCVW (2021)

    Google Scholar 

  19. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  21. Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., Zeng, T.: Transformer for single image super-resolution. In: CVPR Workshops (2022)

    Google Scholar 

  22. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Van Gool, L.: Repaint: inpainting using denoising diffusion probabilistic models. In: CVPR (2022)

    Google Scholar 

  23. Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J.: Structure-preserving super resolution with gradient guidance. In: CVPR (2020)

    Google Scholar 

  24. Matsui, Y., Ito, K., Aramaki, Y., Fujimoto, A., Ogawa, T., Yamasaki, T., Aizawa, K.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76, 21811–21838 (2017)

    Article  Google Scholar 

  25. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR (2022)

    Google Scholar 

  26. Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH (2022)

    Google Scholar 

  27. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. TPAMI (2022)

    Google Scholar 

  28. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML (2015)

    Google Scholar 

  29. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. ICLR (2021)

    Google Scholar 

  30. Tai, Y., Yang, J., Liu, X., Xu, C.: Memnet: a persistent memory network for image restoration. In: ICCV (2017)

    Google Scholar 

  31. Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In: ICCV (2021)

    Google Scholar 

  32. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: CVPR (2018)

    Google Scholar 

  33. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: ECCVW, pp. 0–0 (2018)

    Google Scholar 

  34. Xia, B., et al.: Diffir: efficient diffusion model for image restoration. ICCV (2023)

    Google Scholar 

  35. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Curves and Surfaces: 7th International Conference, Avignon, France, June 24-30, 2010, Revised Selected Papers 7, pp. 711–730. Springer (2012)

    Google Scholar 

  36. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: CVPR (2020)

    Google Scholar 

  37. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: ECCV (2018)

    Google Scholar 

  38. Zhou, S., Zhang, J., Zuo, W., Loy, C.C.: Cross-scale internal graph neural network for image super-resolution. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, O., Long, J., Huang, W., Yang, Z., Li, C. (2025). RDSR:Reparameterized Lightweight Diffusion Model for Image Super-Resolution. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics