Skip to main content

A Novel Anti-rounding Image Steganography Method for Improved UNet++

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Abstract

Deep hiding involves embedding a secret image within a cover image so that the secret becomes imperceptible to ensure the security of steganography. However, in practical applications, accuracy loss is due to data conversion during encoding and decoding. The encoder generates the tensor matrix during training, while the practical application corresponds to the image preservation extraction process; the error caused by the rounding operation in this process will affect the accuracy of the secret information extraction during decoding. Aiming at the currently existing methods ignoring the rounding error problem, this paper proposes a novel anti-rounding image steganography method for improved UNet++. We design an anti-rounding function (ARF) to simulate the real steganographic environment, training the model to overcome the non-differentiable rounding distortion problem. When rounding error is considered, the accuracy of the extracted image decreases. To ensure the image quality in real application scenarios, in this paper, we use the improved UNet++ to ensure the quality of steganographic images by cascading convolution and ECA attention mechanisms and propose the Multiscale Mixing Module (MSMM) for feature fusion. In the extraction stage, the corresponding cover image is selected through a shared cover image library, followed by processing the stego image to obtain a different image before feeding it to the extraction network to guarantee the steganography process’s safety. The experiment results indicate the method’s capability to enhance the imperceptibility of steganography significantly, and the steganography process has better security.

Supported by Key Scientific Research Projects of Universities in Henan Province (No.23A520006); Science and Technology Project of Henan Province (No.222102210199).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson, N.F., Jajodia, S.: Exploring steganography: seeing the unseen. Computer 31(2), 26–34 (1998)

    Article  Google Scholar 

  2. Katzenbeisser, S., Petitcolas, F.A.: Defining security in steganographic systems. In: Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 50–56. SPIE (2002)

    Google Scholar 

  3. Baluja, S.: Hiding images in plain sight: deep steganography. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  4. Baluja, S.: Hiding images within images. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1685–1697 (2019)

    Article  Google Scholar 

  5. Duan, X., Wang, W., Liu, N., Yue, D., Xie, Z., Qin, C.: Stegopnet: image steganography with generalization ability based on pyramid pooling module. IEEE Access 8, 195253–195262 (2020)

    Article  Google Scholar 

  6. Zhang, C., Benz, P., Karjauv, A., Sun, G., Kweon, I.S.: Udh: Universal deep hiding for steganography, watermarking, and light field messaging. Adv. Neural. Inf. Process. Syst. 33, 10223–10234 (2020)

    Google Scholar 

  7. Jing, J., Deng, X., Xu, M., Wang, J., Guan, Z.: Hinet: deep image hiding by invertible network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4733–4742 (2021)

    Google Scholar 

  8. Yin, X., Wu, S., Wang, K., Lu, W., Zhou, Y., Huang, J.: Anti-rounding image steganography with separable fine-tuned network. IEEE Trans. Circuits Syst. Video Technol. (2023)

    Google Scholar 

  9. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color and grayscale images. In: Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges, pp. 27–30 (2001)

    Google Scholar 

  10. Chefranov, A.G., Öz, G.: Adaptive to pixel value and pixel value difference irreversible spatial data hiding method using modified LSB for grayscale images. J. Inf. Secur. Appl. 70, 103314 (2022)

    Google Scholar 

  11. Holub, V., Fridrich, J., Denemark, T.: Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1–13 (2014)

    Article  Google Scholar 

  12. Zhang, W., Zhang, Z., Zhang, L., Li, H., Yu, N.: Decomposing joint distortion for adaptive steganography. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2274–2280 (2016)

    Article  Google Scholar 

  13. Su, W., Ni, J., Li, X., Shi, Y.Q.: A new distortion function design for jpeg steganography using the generalized uniform embedding strategy. IEEE Trans. Circuits Syst. Video Technol. 28(12), 3545–3549 (2018)

    Article  Google Scholar 

  14. Po-Yueh, P.Y., Lin, H.J., et al.: A dwt based approach for image steganography. Int. J. Appl. Sci. Eng. 4(3), 275–290 (2006)

    Google Scholar 

  15. Walia, E., Jain, P., Navdeep, N.: An analysis of LSB & DCT based steganography. Global J. Comp. Sci. Technol. 10(1), 4–8 (2010)

    Google Scholar 

  16. Wang, Y., Moulin, P.: Statistical modeling and steganalysis of DFT-based image steganography. In: Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072, pp. 14–24. SPIE (2006)

    Google Scholar 

  17. Liu, L., Meng, L., Wang, X., Peng, Y.: An image steganography scheme based on resnet. Multimed. Tools Appl. 81(27), 39803–39820 (2022)

    Article  Google Scholar 

  18. Zhu, X., Lai, Z., Liang, Y., Xiong, J., Wu, J.: Generative high-capacity image hiding based on residual CNN in wavelet domain. Appl. Soft Comput. 115, 108170 (2022)

    Article  Google Scholar 

  19. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hayes, J., Danezis, G.: Generating steganographic images via adversarial training. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  21. Tan, J., Liao, X., Liu, J., Cao, Y., Jiang, H.: Channel attention image steganography with generative adversarial networks. IEEE Trans. Netw. Sci. Eng. 9(2), 888–903 (2021)

    Article  Google Scholar 

  22. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. Ieee (2009)

    Google Scholar 

  23. Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces attributes (celeba) dataset. Retrieved August 15(2018) (Nov 2018)

    Google Scholar 

  24. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8693. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  25. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pp. 722–729. IEEE (2008)

    Google Scholar 

  26. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  27. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol. 9906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

  28. Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181–1193 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xintao Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, X. et al. (2025). A Novel Anti-rounding Image Steganography Method for Improved UNet++. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15039. Springer, Singapore. https://doi.org/10.1007/978-981-97-8692-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8692-3_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8691-6

  • Online ISBN: 978-981-97-8692-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics