Skip to main content

Edge Assisted Fast Optical Flow Matching SLAM in Underground Rescue Environments

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15040))

Included in the following conference series:

  • 216 Accesses

Abstract

Simultaneous localization and mapping (SLAM) technology provides basic location services and environment sensing for underground coal mine rescue. Due to the low illumination and less texture underground environment, as well as the restricted computing resources, existing SLAM systems are prevented from working stably in real-time on mobile devices. In this paper, we propose a fast optical flow matching SLAM (FOFM-SLAM) based on edge computing in underground rescue environments. This is the first edge-assisted SLAM system that adopts a two-stage sparse optical flow tracking method based on image pyramid for feature matching and refines the keypoint correspondences by outlier filtering strategy. Further, we design a keyframe selection strategy based on limited viewpoint transfer, taking into account factors such as parallax and tracking points to ensure tracking stability. We perform comprehensive experiments on TUM and ETH3D RGB-D datasets and fully implement FOFM-SLAM on various types of devices. Results reveal that FOFM-SLAM achieves a relative pose error of 0.51cm, and the tracking time is improved by about 40% on the ETH3D dataset compared with the existing solutions. Finally, we implement the field tests in the coal mine to present the practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben Ali, A.J., Kouroshli, M., Semenova, S., Hashemifar, Z.S., Ko, S.Y., Dantu, K.: Edge-SLAM: edge-assisted visual simultaneous localization and mapping. ACM Trans. Embedded Comput. Syst. 22(1), 1–31 (2022)

    Article  Google Scholar 

  2. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  3. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Trans. Rob. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  4. Chang, Y., Ebadi, K., Denniston, C.E., Ginting, M.F., Rosinol, A., Reinke, A., Palieri, M., Shi, J., Chatterjee, A., Morrell, B., et al.: LAMP2.0: a robust multi-robot SLAM system for operation in challenging large-scale underground environments. IEEE Robot. Autom. Lett. 7(4), 9175–9182 (2022)

    Google Scholar 

  5. Chase, T., Ali, A.J.B., Ko, S.Y., Dantu, K.: PRE-SLAM: persistence reasoning in edge-assisted visual SLAM. In: 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), pp. 458–466. IEEE (2022)

    Google Scholar 

  6. Chen, Y., Inaltekin, H., Gorlatova, M.: AdaptSLAM: edge-assisted adaptive SLAM with resource constraints via uncertainty minimization. In: Proceeding of the IEEE INFOCOM (2023)

    Google Scholar 

  7. Ebadi, K., Bernreiter, L., Biggie, H., Catt, G., Chang, Y., Chatterjee, A., Denniston, C.E., Deschênes, S.P., Harlow, K., Khattak, S., et al.: Present and future of SLAM in extreme environments: the DARPA SubT challenge. IEEE Trans. Rob. 40, 936–959 (2024)

    Article  Google Scholar 

  8. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)

    Article  Google Scholar 

  9. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)

    Google Scholar 

  10. Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)

    Article  Google Scholar 

  11. Fu, Q., Yu, H., Wang, X., Yang, Z., He, Y., Zhang, H., Mian, A.: Fast ORB-SLAM without keypoint descriptors. IEEE Trans. Image Process. 31, 1433–1446 (2021)

    Article  Google Scholar 

  12. Gomez-Ojeda, R., Moreno, F.A., Zuniga-Noël, D., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo SLAM system through the combination of points and line segments. IEEE Trans. Rob. 35(3), 734–746 (2019)

    Article  Google Scholar 

  13. Huang, P., Zeng, L., Chen, X., Luo, K., Zhou, Z., Yu, S.: Edge robotics: edge-computing-accelerated multirobot simultaneous localization and mapping. IEEE Internet Things J. 9(15), 14087–14102 (2022)

    Article  Google Scholar 

  14. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007)

    Google Scholar 

  15. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  16. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  17. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Proc. 39(3), 355–368 (1987)

    Article  Google Scholar 

  18. Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508. IEEE (2017)

    Google Scholar 

  19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  20. Schmuck, P., Chli, M.: CCM-SLAM: robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams. J. Field Robot. 36(4), 763–781 (2019)

    Article  Google Scholar 

  21. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  22. Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: ElasticFusion: real-time dense SLAM and light source estimation. Int. J. Robot. Res. 35(14), 1697–1716 (2016)

    Article  Google Scholar 

  23. Wright, K.L., Sivakumar, A., Steenkiste, P., Yu, B., Bai, F.: CloudSLAM: edge offloading of stateful vehicular applications. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC), pp. 139–151. IEEE (2020)

    Google Scholar 

  24. Xu, J., Cao, H., Li, D., Huang, K., Qian, C., Shangguan, L., Yang, Z.: Edge assisted mobile semantic visual SLAM. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1828–1837. IEEE (2020)

    Google Scholar 

  25. Xu, J., Cao, H., Yang, Z., Shangguan, L., Zhang, J., He, X., Liu, Y.: SwarmMap: Scaling up real-time collaborative visual SLAM at the edge. In: 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pp. 977–993 (2022)

    Google Scholar 

  26. Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graphics Gems, pp. 474–485 (1994)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Shenzhen City under Grant No. JCYJ20230807154300002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiliang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fei, C., Zhang, Q., Cai, Z., Jin, Y., He, K., Zhang, K. (2025). Edge Assisted Fast Optical Flow Matching SLAM in Underground Rescue Environments. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8792-0_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8791-3

  • Online ISBN: 978-981-97-8792-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics