Abstract
Simultaneous localization and mapping (SLAM) technology provides basic location services and environment sensing for underground coal mine rescue. Due to the low illumination and less texture underground environment, as well as the restricted computing resources, existing SLAM systems are prevented from working stably in real-time on mobile devices. In this paper, we propose a fast optical flow matching SLAM (FOFM-SLAM) based on edge computing in underground rescue environments. This is the first edge-assisted SLAM system that adopts a two-stage sparse optical flow tracking method based on image pyramid for feature matching and refines the keypoint correspondences by outlier filtering strategy. Further, we design a keyframe selection strategy based on limited viewpoint transfer, taking into account factors such as parallax and tracking points to ensure tracking stability. We perform comprehensive experiments on TUM and ETH3D RGB-D datasets and fully implement FOFM-SLAM on various types of devices. Results reveal that FOFM-SLAM achieves a relative pose error of 0.51cm, and the tracking time is improved by about 40% on the ETH3D dataset compared with the existing solutions. Finally, we implement the field tests in the coal mine to present the practicality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ben Ali, A.J., Kouroshli, M., Semenova, S., Hashemifar, Z.S., Ko, S.Y., Dantu, K.: Edge-SLAM: edge-assisted visual simultaneous localization and mapping. ACM Trans. Embedded Comput. Syst. 22(1), 1–31 (2022)
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)
Campos, C., Elvira, R., RodrÃguez, J.J.G., Montiel, J.M., Tardós, J.D.: ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Trans. Rob. 37(6), 1874–1890 (2021)
Chang, Y., Ebadi, K., Denniston, C.E., Ginting, M.F., Rosinol, A., Reinke, A., Palieri, M., Shi, J., Chatterjee, A., Morrell, B., et al.: LAMP2.0: a robust multi-robot SLAM system for operation in challenging large-scale underground environments. IEEE Robot. Autom. Lett. 7(4), 9175–9182 (2022)
Chase, T., Ali, A.J.B., Ko, S.Y., Dantu, K.: PRE-SLAM: persistence reasoning in edge-assisted visual SLAM. In: 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS), pp. 458–466. IEEE (2022)
Chen, Y., Inaltekin, H., Gorlatova, M.: AdaptSLAM: edge-assisted adaptive SLAM with resource constraints via uncertainty minimization. In: Proceeding of the IEEE INFOCOM (2023)
Ebadi, K., Bernreiter, L., Biggie, H., Catt, G., Chang, Y., Chatterjee, A., Denniston, C.E., Deschênes, S.P., Harlow, K., Khattak, S., et al.: Present and future of SLAM in extreme environments: the DARPA SubT challenge. IEEE Trans. Rob. 40, 936–959 (2024)
Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40(3), 611–625 (2017)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision, pp. 834–849. Springer (2014)
Forster, C., Zhang, Z., Gassner, M., Werlberger, M., Scaramuzza, D.: SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Trans. Rob. 33(2), 249–265 (2016)
Fu, Q., Yu, H., Wang, X., Yang, Z., He, Y., Zhang, H., Mian, A.: Fast ORB-SLAM without keypoint descriptors. IEEE Trans. Image Process. 31, 1433–1446 (2021)
Gomez-Ojeda, R., Moreno, F.A., Zuniga-Noël, D., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo SLAM system through the combination of points and line segments. IEEE Trans. Rob. 35(3), 734–746 (2019)
Huang, P., Zeng, L., Chen, X., Luo, K., Zhou, Z., Yu, S.: Edge robotics: edge-computing-accelerated multirobot simultaneous localization and mapping. IEEE Internet Things J. 9(15), 14087–14102 (2022)
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234. IEEE (2007)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)
Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Proc. 39(3), 355–368 (1987)
Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4503–4508. IEEE (2017)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Schmuck, P., Chli, M.: CCM-SLAM: robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams. J. Field Robot. 36(4), 763–781 (2019)
Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)
Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: ElasticFusion: real-time dense SLAM and light source estimation. Int. J. Robot. Res. 35(14), 1697–1716 (2016)
Wright, K.L., Sivakumar, A., Steenkiste, P., Yu, B., Bai, F.: CloudSLAM: edge offloading of stateful vehicular applications. In: 2020 IEEE/ACM Symposium on Edge Computing (SEC), pp. 139–151. IEEE (2020)
Xu, J., Cao, H., Li, D., Huang, K., Qian, C., Shangguan, L., Yang, Z.: Edge assisted mobile semantic visual SLAM. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1828–1837. IEEE (2020)
Xu, J., Cao, H., Yang, Z., Shangguan, L., Zhang, J., He, X., Liu, Y.: SwarmMap: Scaling up real-time collaborative visual SLAM at the edge. In: 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), pp. 977–993 (2022)
Zuiderveld, K.: Contrast limited adaptive histogram equalization. Graphics Gems, pp. 474–485 (1994)
Acknowledgement
This work was supported by the Natural Science Foundation of Shenzhen City under Grant No. JCYJ20230807154300002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Fei, C., Zhang, Q., Cai, Z., Jin, Y., He, K., Zhang, K. (2025). Edge Assisted Fast Optical Flow Matching SLAM in Underground Rescue Environments. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_1
Download citation
DOI: https://doi.org/10.1007/978-981-97-8792-0_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8791-3
Online ISBN: 978-981-97-8792-0
eBook Packages: Computer ScienceComputer Science (R0)