Skip to main content

Small Target Defects Detection of Aluminum Plates Surface Using an MSN-YOLOv5 Model

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15040))

Included in the following conference series:

  • 182 Accesses

Abstract

The manufacturing defects of flat aluminum sheet products can affect their visual quality. These defects are difficult to detect due to their small size and irregular shape. In this paper, a novel approach named MSN-YOLOv5 is proposed for detecting small object defects based on YOLOv5. The proposed method combines Multi-Dconv Head Transposed Attention (MDTA), Shuffle Attention (SA), and Normalized Wasserstein Distance (NWD). To enhance the feature extraction network, the advantages of Bottleneck Transformers and MDTA are leveraged, particularly in improving the last C3 module, which is named MD3. This enhancement strengthens the capture of global information. Additionally, the SA module is introduced before the 40x40 detection head of the prediction network to reduce interference from irrelevant background information. Furthermore, the NWD loss function is incorporated, which combines CIOU and NWD weighting, to address the sensitivity of previous Intersection over Union (IoU) loss functions to small object position deviations. The experimental results indicate that the model size is 25.79MB, achieving a of 83.1% and an FPS of 75.1. Compared to the baseline model, the proposed method demonstrates an increase of 4.133% in and 11.4% in FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chetverikov, D., Hanbury, A.: Finding defects in texture using regularity and local orientation. Pattern Recogn. 35(10), 2165–2180 (2002)

    Article  Google Scholar 

  2. Hou, Z., Parker, J.M.: Texture defect detection using support vector machines with adaptive Gabor wavelet features. In: Proceedings of the 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05), vol 1, F. IEEE (2005)

    Google Scholar 

  3. Suvdaa, B., Ahn, J., Ko, J.: Steel surface defects detection and classification using SIFT and voting strategy. Int. J. Softw. Eng. Appl. 6(2), 161–166 (2012)

    Google Scholar 

  4. Hu, H., Li, Y., Liu, M., et al.: Classification of defects in steel strip surface based on multiclass support vector machine. Multimed. Tools Appl. 69, 199–216 (2014)

    Article  Google Scholar 

  5. Deng, Y.-S., Luo, A.-C., Dai, M.-J.: Building an automatic defect verification system using deep neural network for pcb defect classification. In: Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), F. IEEE (2018)

    Google Scholar 

  6. Liang, Q., Zhu, W., Sun, W., et al.: In-line inspection solution for codes on complex backgrounds for the plastic container industry. Measurement 148, 106965 (2019)

    Article  Google Scholar 

  7. Deitsch, S., Christlein, V., Berger, S., et al.: Automatic classification of defective photovoltaic module cells in electroluminescence images. Sol. Energy 185, 455–468 (2019)

    Article  Google Scholar 

  8. Zhang, Z., Wen, G., Chen, S.: Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding. J. Manuf. Process. 45, 208–216 (2019)

    Article  Google Scholar 

  9. Ma, L., Xie, W., Zhang, Y.: Blister defect detection based on convolutional neural network for polymer lithium-ion battery. Appl. Sci. 9(6), 1085 (2019)

    Article  Google Scholar 

  10. Cha, Y.J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput. Aided Civil Infrastruct. Eng. 32(5), 361–378 (2017)

    Article  Google Scholar 

  11. Yang, L., Li, X., Liu, Y.: A novel vision-based defect detection method for hot-rolled steel strips via multi-branch network. Multimed. Tools Appl. 1–22 (2023)

    Google Scholar 

  12. Duan, C., Zhang, T.: Two-stream convolutional neural network based on gradient image for aluminum profile surface defects classification and recognition. IEEE Access 8, 172152–172165 (2020)

    Article  Google Scholar 

  13. He, D., Xu, K., Zhou, P.: Defect detection of hot rolled steels with a new object detection framework called classification priority network. Comput. Ind. Eng. 128, 290–297 (2019)

    Article  Google Scholar 

  14. Tang, B., Song, Z.K., Sun, W., et al.: An end-to-end steel surface defect detection approach via Swin transformer. IET Image Proc. 17(5), 1334–1345 (2023)

    Article  Google Scholar 

  15. Wang, C., Sun, M., Cao, Y., et al.: Lightweight network-based surface defect detection method for steel plates. Sustainability 15(4), 3733 (2023)

    Article  Google Scholar 

  16. Li, J., Su, Z., Geng, J., et al.: Real-time detection of steel strip surface defects based on improved yolo detection network. IFAC-PapersOnLine 51(21), 76–81 (2018)

    Article  Google Scholar 

  17. Cui, Y., Lu, S., Liu, S.: Real-time detection of wood defects based on SPP-improved YOLO algorithm. Multimed. Tools Appl. 1–14 (2023)

    Google Scholar 

  18. Zhao, Q., Ji, T., Liang, S., et al.: PCB surface defect fast detection method based on attention and multi-source fusion. Multimed. Tools Appl. 1–22 (2023)

    Google Scholar 

  19. Zhu, X., Liu, J., Zhou, X., et al.: Detection of irregular small defects on metal base surface of infrared laser diode based on deep learning. Multimed. Tools Appl. 1–17 (2023)

    Google Scholar 

  20. Li, S., Li, K., Qiao, Y., et al.: A multi-scale cucumber disease detection method in natural scenes based on YOLOv5. Comput. Electron. Agric. 202, 107363 (2022)

    Article  Google Scholar 

  21. Gong, H., Mu, T., Li, Q., et al.: Swin-Transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sens. 14(12), 2861 (2022)

    Article  Google Scholar 

  22. Zhang, R., Wen, C.: SOD-YOLO: a small target defect detection algorithm for wind turbine blades based on improved YOLOv5. Adv. Theory Simul. 5(7), 2100631 (2022)

    Article  Google Scholar 

  23. Lai, H., Chen, L., Liu, W., et al.: STC-YOLO: small object detection network for traffic signs in complex environments. Sensors 23(11), 5307 (2023). https://doi.org/10.3390/s23115307

    Article  Google Scholar 

  24. Srinivas, A., Lin, T.-Y., Parmar, N., et al.: Bottleneck transformers for visual recognition. In: Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F (2021)

    Google Scholar 

  25. Zamir, S.W., Arora, A., Khan, S., et al.: Restormer: efficient transformer for high-resolution image restoration. In: Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, F (2022)

    Google Scholar 

  26. Zhang, Q.-L., Yang, Y.-B.: Sa-net: Shuffle attention for deep convolutional neural networks. In: Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), F. IEEE (2021)

    Google Scholar 

  27. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  28. Liu, Y., Shao, Z., Teng, Y., et al.: NAM: Normalization-based attention module (2021). arXiv:211112419

    Google Scholar 

  29. Woo, S., Park, J., Lee, J.-Y., et al.: Cbam: Convolutional block attention module. In: Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV), F (2018)

    Google Scholar 

  30. Yang, L., Zhang, R.-Y., Li, L., et al.: Simam: a simple, parameter-free attention module for convolutional neural networks. In: Proceedings of the International Conference on Machine Learning, F. PMLR (2021)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018). arXiv:180402767

    Google Scholar 

  32. Ge, Z., Liu, S., Wang, F., et al.: Yolox: Exceeding yolo series in 2021 (2021). arXiv:210708430

    Google Scholar 

  33. Zhu, X., Lyu, S., Wang, X., et al.: TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, F (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., You, J., Jia, J., Zhang, W., Ren, X. (2025). Small Target Defects Detection of Aluminum Plates Surface Using an MSN-YOLOv5 Model. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8792-0_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8791-3

  • Online ISBN: 978-981-97-8792-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics