Skip to main content

Camouflaged Object Detection via Scale-Feature Attention and Type-Feature Attention

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15042))

Included in the following conference series:

  • 216 Accesses

Abstract

Camouflaged object detection targets at identifying and segmenting objects hidden in the surroundings. Due to the various shapes and sizes, and highly non-discriminative features of camouflaged objects, it is a challenge for Convolutional Neural Networks (CNNs) to detect them from the background. To tackle the first problem of various shapes and sizes, we propose a Scale-Feature Attention (SFA), which can effectively integrate feature information of different scales, so that the model can comprehensively perceive and understand the visual characteristics of different sizes of camouflaged objects. Additionally, the traditional CNN model is difficult to capture the part-whole relationship of camouflaged objects. To solve the second problem of CNNs’ limitation, we propose a Type-Feature Attention (TFA) to integrate contrast from CNNs and part-whole relations from CapsNets, which will improve the identification and object wholeness of camouflaged objects. Experiments on three camouflaged object detection benchmark datasets show that both the proposed SFA and TFA achieve significant performance improvement, which verifies the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009)

    Google Scholar 

  2. Bhajantri, N.U., Nagabhushan, P.: Camouflage defect identification: a novel approach. In: 9th International Conference on Information Technology (ICIT’06), pp. 145–148. IEEE (2006)

    Google Scholar 

  3. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)

    Google Scholar 

  4. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation (2018). arXiv:1805.10421

  5. Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)

    Google Scholar 

  6. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: PraNet: parallel reverse attention network for polyp segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 263–273. Springer (2020)

    Google Scholar 

  7. He, C., Li, K., Zhang, Y., Tang, L., Zhang, Y., Guo, Z., Li, X.: Camouflaged object detection with feature decomposition and edge reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22046–22055 (2023)

    Google Scholar 

  8. Hou, J.Y.Y.H.W., Li, J.: Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Eng. 15, 2201–2205 (2011)

    Google Scholar 

  9. Huerta, I., Rowe, D., Mozerov, M., Gonzàlez, J.: Improving background subtraction based on a casuistry of colour-motion segmentation problems. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 475–482. Springer, (2007)

    Google Scholar 

  10. Jia, Q., Yao, S., Liu, Y., Fan, X., Liu, R., Luo, Z.: Segment, magnify and reiterate: detecting camouflaged objects the hard way. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4713–4722 (2022)

    Google Scholar 

  11. Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)

    Article  MATH  Google Scholar 

  12. Li, A., Zhang, J., Lv, Y., Liu, B., Zhang, T., Dai, Y.: Uncertainty-aware joint salient object and camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10071–10081 (2021)

    Google Scholar 

  13. Liu, Y., Cheng, D., Zhang, D., Xu, S., Han, J.: Capsule networks with residual pose routing. IEEE Trans. Neural Netw. Learn. Syst. (2024)

    Google Scholar 

  14. Liu, Y., Dong, X., Zhang, D., Xu, S.: Deep unsupervised part-whole relational visual saliency. Neurocomputing 563, 126916 (2024)

    Article  Google Scholar 

  15. Liu, Y., Zhang, D., Liu, N., Xu, S., Han, J.: Disentangled capsule routing for fast part-object relational saliency. IEEE Trans. Image Process. 31, 6719–6732 (2022)

    Article  MATH  Google Scholar 

  16. Liu, Y., Zhang, D., Zhang, Q., Han, J.: Integrating part-object relationship and contrast for camouflaged object detection. IEEE Trans. Inf. Forensics Secur. 16, 5154–5166 (2021)

    Article  MATH  Google Scholar 

  17. Liu, Y., Zhang, D., Zhang, Q., Han, J.: Part-object relational visual saliency. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3688–3704 (2021)

    MATH  Google Scholar 

  18. Liu, Y., Zhang, Q., Zhang, D., Han, J.: Employing deep part-object relationships for salient object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1232–1241 (2019)

    Google Scholar 

  19. Liu, Y., Zhou, L., Wu, G., Xu, S., Han, J.: TCGNet: type-correlation guidance for salient object detection. IEEE Trans. Intell. Transp. Syst. (2023)

    Google Scholar 

  20. Luo, N., Pan, Y., Sun, R., Zhang, T., Xiong, Z., Wu, F.: Camouflaged instance segmentation via explicit de-camouflaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17918–17927 (2023)

    Google Scholar 

  21. Lv, Y., Zhang, J., Dai, Y., Li, A., Liu, B., Barnes, N., Fan, D.P.: Simultaneously localize, segment and rank the camouflaged objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11591–11601 (2021)

    Google Scholar 

  22. McIntosh, B., Duarte, K., Rawat, Y.S., Shah, M.: Visual-textual capsule routing for text-based video segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9942–9951 (2020)

    Google Scholar 

  23. Mei, H., Ji, G.P., Wei, Z., Yang, X., Wei, X., Fan, D.P.: Camouflaged object segmentation with distraction mining. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8772–8781 (2021)

    Google Scholar 

  24. Pan, Y., Chen, Y., Fu, Q., Zhang, P., Xu, X., et al.: Study on the camouflaged target detection method based on 3D convexity. Mod. Appl. Sci. 5(4), 152 (2011)

    Article  MATH  Google Scholar 

  25. Pang, Y., Zhao, X., Xiang, T.Z., Zhang, L., Lu, H.: Zoom in and out: a mixed-scale triplet network for camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pp. 2160–2170 (2022)

    Google Scholar 

  26. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  27. Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database. Unpublished Manuscript 2(6), 7 (2018)

    Google Scholar 

  28. Sun, Y., Chen, G., Zhou, T., Zhang, Y., Liu, N.: Context-aware cross-level fusion network for camouflaged object detection (2021). arXiv:2105.12555

  29. Yang, F., Zhai, Q., Li, X., Huang, R., Luo, A., Cheng, H., Fan, D.P.: Uncertainty-guided transformer reasoning for camouflaged object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4146–4155 (2021)

    Google Scholar 

  30. Yu, C., Zhu, X., Zhang, X., Zhang, Z., Lei, Z.: Graphics capsule: Learning hierarchical 3D face representations from 2d images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20981–20990 (2023)

    Google Scholar 

  31. Zhai, Q., Li, X., Yang, F., Chen, C., Cheng, H., Fan, D.P.: Mutual graph learning for camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12997–13007 (2021)

    Google Scholar 

  32. Zhong, Y., Li, B., Tang, L., Kuang, S., Wu, S., Ding, S.: Detecting camouflaged object in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4504–4513 (2022)

    Google Scholar 

  33. Zhu, H., Li, P., Xie, H., Yan, X., Liang, D., Chen, D., Wei, M., Qin, J.: I can find you! boundary-guided separated attention network for camouflaged object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 3608–3616 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by the National Natural Science Foundation of Jiangsu Province under Grant BK20221379; the National Natural Science Foundation of China under Grant 62306048; the Changzhou University CNPC-CZU Innovation Alliance under Grant CCIA2023-01; the Chang-zhou Leading Innovative Talent Introduction and Cultivation Project under Grant 20221460; and by the Changzhou Applied Basic Research Fund Project Grant CQ20230092 and CJ20235036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Meng, H. (2025). Camouflaged Object Detection via Scale-Feature Attention and Type-Feature Attention. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15042. Springer, Singapore. https://doi.org/10.1007/978-981-97-8858-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8858-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8857-6

  • Online ISBN: 978-981-97-8858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics