Skip to main content

Mask-Guided Clothes-Irrelevant and Background-Irrelevant Network with Knowledge Propagation for Cloth-Changing Person Re-identification

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15042))

Included in the following conference series:

  • 215 Accesses

Abstract

In recent years, the increasing demand for long-term pedestrian retrieval has brought the cloth-changing person re-identification (CC-ReID) challenge into the spotlight. In scenarios spanning long periods, there are two main challenges: (1) clothing and background interference; (2) extraction of identity-sensitive information. To address these issues, we introduce a robust framework titled Mask-guided clothes-irrelevant and background-irrelevant Network (Magic-Net). Magic-Net employs knowledge distillation across two distinct streams: the outline stream and the exposed stream. The outline stream captures the pedestrians’ contour, minimizing the impact of clothing and background, while the exposed stream enriches identity-sensitive information from the pedestrian’s exposed areas. This dual-stream integration focuses the model on critical re-identification regions. Evaluations on several benchmark datasets demonstrate Magic-Net’s exceptional performance in tackling the CC-ReID challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, J., Jiang, X., Wang, F., Zhang, J., Zheng, F., Sun, X., Zheng, W.S.: Learning 3d shape feature for texture-insensitive person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8146–8155 (2021)

    Google Scholar 

  2. Chen, L., Yang, H., Xu, Q., Gao, Z.: Harmonious attention network for person re-identification via complementarity between groups and individuals 453, 766–776 (2021)

    Google Scholar 

  3. Eom, C., Lee, W., Lee, G., Ham, B.: Disentangled representations for short-term and long-term person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 44(12), 8975–8991 (2021)

    Google Scholar 

  4. Fan, C., Peng, Y., Cao, C., Liu, X., Hou, S., Chi, J., Huang, Y., Li, Q., He, Z.: Gaitpart: Temporal part-based model for gait recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14225–14233 (2020)

    Google Scholar 

  5. Gao, Z., Wei, H., Guan, W., Nie, J., Wang, M., Chen, S.: A semantic-aware attention and visual shielding network for cloth-changing person re-identification. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  6. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Google Scholar 

  7. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification (2017). arXiv:1703.07737

  8. Herzog, F., Ji, X., Teepe, T., Hörmann, S., Gilg, J., Rigoll, G.: Lightweight multi-branch network for person re-identification. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 1129–1133. IEEE (2021)

    Google Scholar 

  9. Hong, P., Wu, T., Wu, A., Han, X., Zheng, W.S.: Fine-grained shape-appearance mutual learning for cloth-changing person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10513–10522 (2021)

    Google Scholar 

  10. Huang, Y., Wu, Q., Xu, J., Zhong, Y., Zhang, Z.: Clothing status awareness for long-term person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11895–11904 (2021)

    Google Scholar 

  11. Huang, Y., Xu, J., Wu, Q., Zhong, Y., Zhang, P., Zhang, Z.: Beyond scalar neuron: adopting vector-neuron capsules for long-term person re-identification. IEEE Trans. Circuits Syst. Video Technol. 30(10), 3459–3471 (2019)

    Google Scholar 

  12. Jin, X., He, T., Zheng, K., Yin, Z., Shen, X., Huang, Z., Feng, R., Huang, J., Chen, Z., Hua, X.S.: Cloth-changing person re-identification from a single image with gait prediction and regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14278–14287 (2022)

    Google Scholar 

  13. Li, Y.J., Luo, Z., Weng, X., Kitani, K.M.: Learning shape representations for clothing variations in person re-identification (2020). arXiv:2003.07340

  14. Li, Y.J., Weng, X., Kitani, K.M.: Learning shape representations for person re-identification under clothing change. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2432–2441 (2021)

    Google Scholar 

  15. Liu, M., Yan, X., Wang, C., Wang, K.: Segmentation mask-guided person image generation. Appl. Intell. 51, 1161–1176 (2021)

    Article  MATH  Google Scholar 

  16. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., Zhang, L.: Grounding dino: Marrying dino with grounded pre-training for open-set object detection (2023). arXiv:abs/2303.05499

  17. Medeiros, L.: Lang segment anything (2023). https://github.com/luca-medeiros/lang-segment-anything

  18. Miao, J., Wu, Y., Liu, P., Ding, Y., Yang, Y.: Pose-guided feature alignment for occluded person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 542–551 (2019)

    Google Scholar 

  19. Peng, C., Wang, B., Liu, D., Wang, N., Hu, R., Gao, X.: Masked attribute description embedding for cloth-changing person re-identification (2024). arXiv:2401.05646

  20. Shi, W., Liu, H., Liu, M.: Iranet: identity-relevance aware representation for cloth-changing person re-identification. Image Vis. Comput. 117, 104335 (2022)

    Article  MATH  Google Scholar 

  21. Shu, X., Li, G., Wang, X., Ruan, W., Tian, Q.: Semantic-guided pixel sampling for cloth-changing person re-identification. IEEE Signal Process. Lett. 28, 1365–1369 (2021)

    Article  MATH  Google Scholar 

  22. Song, C., Huang, Y., Ouyang, W., Wang, L.: Mask-guided contrastive attention model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1179–1188 (2018)

    Google Scholar 

  23. Thanh, D.T., Lee, Y., Kang, B.: Enhancing long-term person re-identification using global, local body part, and head streams. Neurocomputing 580, 127480 (2024)

    Article  Google Scholar 

  24. Wu, J., Liu, H., Shi, W., Tang, H., Guo, J.: Identity-sensitive knowledge propagation for cloth-changing person re-identification. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 1016–1020. IEEE (2022)

    Google Scholar 

  25. Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on computer Vision, pp. 1395–1403 (2015)

    Google Scholar 

  26. Xu, W., Liu, H., Shi, W., Miao, Z., Lu, Z., Chen, F.: Adversarial feature disentanglement for long-term person re-identification. In: IJCAI, pp. 1201–1207 (2021)

    Google Scholar 

  27. Yang, Q., Wu, A., Zheng, W.S.: Person re-identification by contour sketch under moderate clothing change. IEEE Trans. Pattern Anal. Mach. Intell. 43(6), 2029–2046 (2019)

    Google Scholar 

  28. Yang, Z., Lin, M., Zhong, X., Wu, Y., Wang, Z.: Good is bad: Causality inspired cloth-debiasing for cloth-changing person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1472–1481 (2023)

    Google Scholar 

  29. Yu, S., Li, S., Chen, D., Zhao, R., Yan, J., Qiao, Y.: Cocas: a large-scale clothes changing person dataset for re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3400–3409 (2020)

    Google Scholar 

  30. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3702–3712 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Xiamen Natural Science Foundation(Grant No.3502Z202372034), the research startup foundation of Huaqiao university(Grant No.20201XD022, Grant No.HQJGYB2406) and Quanzhou Science and Technology Projects(Grant No.2023N013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longtao Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, G., Liu, G., Chen, L., Liao, G., Zeng, H. (2025). Mask-Guided Clothes-Irrelevant and Background-Irrelevant Network with Knowledge Propagation for Cloth-Changing Person Re-identification. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15042. Springer, Singapore. https://doi.org/10.1007/978-981-97-8858-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8858-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8857-6

  • Online ISBN: 978-981-97-8858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics