Skip to main content

EfficientMatting: Bilateral Matting Network for Real-Time Human Matting

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15042))

Included in the following conference series:

  • 366 Accesses

Abstract

Recent human matting methods typically suffer from two drawbacks: 1) high computation overhead caused by multiple stages, and 2) limited practical application due to the need for auxiliary guidance (e.g., trimap, mask, or background). To address these issues, we propose EfficientMatting, a real-time human matting method using only a single image as input. Specifically, EfficientMatting incorporates a bilateral network composed of two complementary branches: a transformer-based context information branch and a CNN-based spatial information branch. Furthermore, we introduce three novel techniques to enhance model performance while maintaining high inference efficiency. Firstly, we design a Semantic Guided Fusion Module (SGFM), which empowers the model to dynamically acquire valuable features with the assistance of context information. Secondly, we design a lightweight Detail Preservation Module (DPM) to achieve detail preservation and mitigate image artifacts during the upsampling process. Thirdly, we introduce the Supervised-Enhanced Training Strategy (SETS) to explicitly provide supervision on hidden features. Extensive experiments on P3M-10k, Human-2K, and PPM-100 datasets show that EfficientMatting outperforms state-of-the-art real-time human matting methods in terms of both model performance and inference speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, S., Zhang, X., Fan, H., Huang, H., Liu, J., Liu, J., Liu, J., Wang, J., Sun, J.: Disentangled image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8819–8828 (2019)

    Google Scholar 

  2. Chen, Q., Li, D., Tang, C.K.: KNN matting. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2175–2188 (2013)

    Article  Google Scholar 

  3. Chen, Q., Ge, T., Xu, Y., Zhang, Z., Yang, X., Gai, K.: Semantic human matting. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 618–626 (2018)

    Google Scholar 

  4. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001. vol. 2, pp. II–II. IEEE (2001)

    Google Scholar 

  5. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742 (2021)

    Google Scholar 

  6. Hong, J., Zuo, J., Han, C., Zheng, R., Tian, M., Gao, C., Sang, N.: Spatial cascaded clustering and weighted memory for unsupervised person re-identification (2024). arXiv:2403.00261

  7. Hong, Y., Pan, H., Sun, W., Jia, Y.: Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes (2021). arXiv:2101.06085

  8. Hou, Q., Liu, F.: Context-aware image matting for simultaneous foreground and alpha estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4130–4139 (2019)

    Google Scholar 

  9. , Karacan, L., Erdem, A., Erdem, E.: Image matting with KL-divergence based sparse sampling. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 424–432 (2015)

    Google Scholar 

  10. Ke, Z., Sun, J., Li, K., Yan, Q., Lau, R.W.: MODNet: real-time trimap-free portrait matting via objective decomposition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1140–1147 (2022)

    Google Scholar 

  11. Lee, P., Wu, Y.: Nonlocal matting. In: CVPR 2011, pp. 2193–2200. IEEE (2011)

    Google Scholar 

  12. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2007)

    Article  MATH  Google Scholar 

  13. Li, J., Ma, S., Zhang, J., Tao, D.: Privacy-preserving portrait matting. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3501–3509 (2021)

    Google Scholar 

  14. Li, J., Zhang, J., Maybank, S.J., Tao, D.: Bridging composite and real: towards end-to-end deep image matting. Int. J. Comput. Vision 130(2), 246–266 (2022)

    Article  MATH  Google Scholar 

  15. Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting (2021). arXiv:2107.07235

  16. Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11450–11457 (2020)

    Google Scholar 

  17. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8762–8771 (2021)

    Google Scholar 

  18. Liu, X., Peng, H., Zheng, N., Yang, Y., Hu, H., Yuan, Y.: Efficientvit: Memory efficient vision transformer with cascaded group attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14420–14430 (2023)

    Google Scholar 

  19. Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite information mining and integration for image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7555–7564 (2021)

    Google Scholar 

  20. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices matter: Learning to index for deep image matting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3266–3275 (2019)

    Google Scholar 

  21. Luo, R., Wei, R., Gao, C., Sang, N.: Frequency information matters for image matting. In: Asian Conference on Pattern Recognition, pp. 81–94. Springer, Berlin (2023)

    Google Scholar 

  22. Park, G., Son, S., Yoo, J., Kim, S., Kwak, N.: Matteformer: transformer-based image matting via prior-tokens. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11696–11706 (2022)

    Google Scholar 

  23. Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-guided hierarchical structure aggregation for image matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13676–13685 (2020)

    Google Scholar 

  24. Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., Rott, P.: A perceptually motivated online benchmark for image matting. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1826–1833. IEEE (2009)

    Google Scholar 

  25. Sengupta, S., Jayaram, V., Curless, B., Seitz, S.M., Kemelmacher-Shlizerman, I.: Background matting: the world is your green screen. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2291–2300 (2020)

    Google Scholar 

  26. Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving image matting using comprehensive sampling sets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 636–643 (2013)

    Google Scholar 

  27. Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  28. Wei, R., Liu, Y., Song, J., Cui, H., Xie, Y., Zhou, K.: Chain: Exploring global-local spatio-temporal information for improved self-supervised video hashing. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1677–1688 (2023)

    Google Scholar 

  29. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2970–2979 (2017)

    Google Scholar 

  30. Xu, Z., Shang, H., Yang, S., Xu, R., Yan, Y., Li, Y., Huang, J., Yang, H.C., Zhou, J.: Hierarchical painter: Chinese landscape painting restoration with fine-grained styles. Vis. Intell. 1(1), 19 (2023)

    Article  MATH  Google Scholar 

  31. Yao, J., Wang, X., Yang, S., Wang, B.: Vitmatte: boosting image matting with pre-trained plain vision transformers. Inf. Fusion 103, 102091 (2024)

    Article  MATH  Google Scholar 

  32. Yao, J., Wang, X., Ye, L., Liu, W.: Matte anything: interactive natural image matting with segment anything models (2023). arXiv:2306.04121

  33. Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.: Mask guided matting via progressive refinement network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1154–1163 (2021)

    Google Scholar 

  34. Zhang, H., Wang, X., Xu, X., Qing, Z., Gao, C., Sang, N.: Hr-pro: Point-supervised temporal action localization via hierarchical reliability propagation (2023). arXiv:2308.12608

  35. Zhang, Y., Gong, L., Fan, L., Ren, P., Huang, Q., Bao, H., Xu, W.: A late fusion cnn for digital matting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7469–7478 (2019)

    Google Scholar 

  36. Zhou, Y., Lu, R., Xue, F., Gao, Y.: Occlusion relationship reasoning with a feature separation and interaction network. Vis. Intell. 1(1), 23 (2023)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, R., Wei, R., Zhang, H., Tian, M., Gao, C., Sang, N. (2025). EfficientMatting: Bilateral Matting Network for Real-Time Human Matting. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15042. Springer, Singapore. https://doi.org/10.1007/978-981-97-8858-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8858-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8857-6

  • Online ISBN: 978-981-97-8858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics