Abstract
Micro/nanorobots are widely applied to medical fields due to their small size and access to hard-to-reach human tissues. Medical micro/nanorobots can move, deform, rotate, or achieve other functions via different actuations. These actuations may come from sources inside (internal) or outside (external) human bodies. This review summarizes the actuation mechanisms, actuation-based functions, and possible biomedical applications of common actuations. The advantages and weaknesses of these internal and external actuations are discussed. Further success in medical MNRs is expected as actuation-related technologies progress shortly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kong, X., Gao, P., Wang, J., Fang, Y., Hwang, K.C.: Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 16(1), 74 (2023)
Wu, Z., Chen, Y., Mukasa, D., Pak, O.S., Gao, W.: Medical micro/nanorobots in complex media. Chemi. Soc. Rev. 49(22), 8088–8112 (2020)
Soto, F., Ji Wang, R., Ahmed, U Demirci: Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 2002203 (2020). https://doi.org/10.1002/advs.202002203
Chen, C., Ding, S., Wang, J.: Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024)
Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., Pumera, M.: Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234
Qiu, F., Nelson, B.J.: Magnetic helical micro- and nanorobots: toward their biomedical applications. Engineering 1(1), 021–026 (2015). https://doi.org/10.15302/J-ENG-2015005
Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862–865 (2005). https://doi.org/10.1038/nature04090
Liu, D., Guo, R., Wang, B., Hu, J., Lu, Y.: Magnetic micro/nanorobots: a new age in biomedicines. Adv. Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200208
Dong, Y., et al.: Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. ACS Nano 15, 5056–5067 (2021). https://doi.org/10.1021/acsnano.0c10010
Huang, D., Cai, L., Li, N., Zhao, Y.: Ultrasound‐trigged micro/nanorobots for biomedical applications. Smart Med. (2023). https://doi.org/10.1002/SMMD.20230003
Esteban-Fernández De Ávila, B., et al.: Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano. 10, 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415
Liu, F.W., Cho, S.K.: 3-D swimming microdrone powered by acoustic bubbles. Lab Chip 21, 355–364 (2021). https://doi.org/10.1039/d0lc00976h
Palagi, S., et al.: Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569
Yang, W., Wang, X., Wang, Z., Liang, W., Ge, Z.: Light-powered microrobots: recent progress and future challenges. Opt. Lasers Eng. 161, 107380 (2023)
Dong, R., Zhang, Q., Gao, W., Pei, A., Ren, B.: Highly efficient light-driven TiO2-Au Janus Micromotors. ACS Nano 10, 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940
Fusco, S., et al.: Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7, 6803–6811 (2015). https://doi.org/10.1021/acsami.5b00181
Zhu, C.H., Lu, Y., Peng, J., Chen, J.F., Yu, S.H.: Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 22, 4017–4022 (2012). https://doi.org/10.1002/adfm.201201020
Ussia, M., Urso, M., Kment, S., Fialova, T., Klima, K., Dolezelikova, K., Pumera, M.: Light‐propelled nanorobots for facial titanium implants biofilms removal. Small (2022). https://doi.org/10.1002/smll.202200708
Novotný, F., Wang, H., Pumera, M.: Nanorobots: machines squeezed between molecular motors and micromotors. Chem 6(4), 1032 (2020)
Feng, Y., An, M., Liu, Y., Sarwar, M.T., Yang, H.: Advances in chemically powered micro/nanorobots for biological applications: a review. Adv. Funct. Mater. 33(1), 2209883 (2023)
Celik Cogal, G., Das, P.K., Yurdabak Karaca, G., Bhethanabotla, V.R., Uygun Oksuz, A.: Fluorescence detection of miRNA-21 Using Au/Pt bimetallic tubular micromotors driven by chemical and surface acoustic wave forces. ACS Appl. Bio Mater. 4, 7932–7941 (2021). https://doi.org/10.1021/acsabm.1c00854
Wang, J., et al.: Self‐Propelled PLGA micromotor with chemotactic response to inflammation. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.201901710
Ma, X., Hortelao, A.C., Miguel-López, A., Sánchez, S.: Bubble-free propulsion of Ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 138, 13782–13785 (2016). https://doi.org/10.1021/jacs.6b06857
Wang, S., et al.: Hydrogen‐powered microswimmers for precise and active hydrogen therapy towards acute ischemic stroke. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202009475
Shields, C.W.: Biohybrid microrobots for enhancing adoptive cell transfers. Acc. Mater. Res. 4(7), 566–569 (2023). https://doi.org/10.1021/accountsmr.3c00061
Li, J., Dekanovsky, L., Khezri, B., Wu, B., Zhou, H., Sofer, Z.: Biohybrid micro- and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022). https://doi.org/10.34133/2022/9824057
Tang, S., et al.: Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020)
Wu, Z., et al.: Turning erythrocytes into functional micromotors. ACS Nano 8, 12041–12048 (2014). https://doi.org/10.1021/nn506200x
Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F., Schmidt, O.G.: Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398
Xu, H., Medina-Sánchez, M., Maitz, M.F., Werner, C., Schmidt, O.G.: Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020). https://doi.org/10.1021/acsnano.9b07851
Li, S., et al.: A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018). https://doi.org/10.1038/nbt.4071
Ceren Yasa, I., Ceylan, H., Bozuyuk, U., Wild, A.-M., Sitti, M.: Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, aaz3867 (2020)
Wu, Z., et al.: Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25, 3881–3887 (2015). https://doi.org/10.1002/adfm.201501050
Xuan, M., Shao, J., Li, J.: Cell membrane-covered nanoparticles as biomaterials. National Sci. Rev. 6, 551–561 (2019)
Acknowledgments
This work was supported by the National Key Research and Development Program of China (grant number 2022YFB3304000); the Key Research and Development Projects of Shaanxi Province (grant numbers 2021LLRH08, 2022GXLH-02-15); the Science and Technology Planning Project of Xi’an (grant number 20KYPT0002-1); the Emerging Interdisciplinary Project of Northwestern Polytechnical University (grant number 22GH0306); the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (grant number CX2023052); and the Provincial Special Fund for Science and Technology Development of Shannxi (grant number 2024JC-YBMS-630).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interests
The authors have no competing interests to declare that are relevant to the content of this article.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, H., Wang, Y., Liu, M., Liu, Z., Chen, X., Xu, Y. (2025). Actuation Mechanisms and Functions for Medical Micro/Nanorobots. In: Ge, S.S., Luo, Z., Wang, Y., Samani, H., Ji, R., He, H. (eds) Social Robotics. ICSR + BioMed 2024. Lecture Notes in Computer Science(), vol 14916. Springer, Singapore. https://doi.org/10.1007/978-981-97-8963-4_25
Download citation
DOI: https://doi.org/10.1007/978-981-97-8963-4_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8962-7
Online ISBN: 978-981-97-8963-4
eBook Packages: Computer ScienceComputer Science (R0)