Skip to main content

Actuation Mechanisms and Functions for Medical Micro/Nanorobots

  • Conference paper
  • First Online:
Social Robotics (ICSR + BioMed 2024)

Abstract

Micro/nanorobots are widely applied to medical fields due to their small size and access to hard-to-reach human tissues. Medical micro/nanorobots can move, deform, rotate, or achieve other functions via different actuations. These actuations may come from sources inside (internal) or outside (external) human bodies. This review summarizes the actuation mechanisms, actuation-based functions, and possible biomedical applications of common actuations. The advantages and weaknesses of these internal and external actuations are discussed. Further success in medical MNRs is expected as actuation-related technologies progress shortly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kong, X., Gao, P., Wang, J., Fang, Y., Hwang, K.C.: Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 16(1), 74 (2023)

    Article  Google Scholar 

  2. Wu, Z., Chen, Y., Mukasa, D., Pak, O.S., Gao, W.: Medical micro/nanorobots in complex media. Chemi. Soc. Rev. 49(22), 8088–8112 (2020)

    Article  Google Scholar 

  3. Soto, F., Ji Wang, R., Ahmed, U Demirci: Medical micro/nanorobots in precision medicine. Adv. Sci. 7(21), 2002203 (2020). https://doi.org/10.1002/advs.202002203

    Article  Google Scholar 

  4. Chen, C., Ding, S., Wang, J.: Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024)

    Article  Google Scholar 

  5. Zhou, H., Mayorga-Martinez, C.C., Pané, S., Zhang, L., Pumera, M.: Magnetically driven micro and nanorobots. Chem. Rev. 121(8), 4999–5041 (2021). https://doi.org/10.1021/acs.chemrev.0c01234

    Article  Google Scholar 

  6. Qiu, F., Nelson, B.J.: Magnetic helical micro- and nanorobots: toward their biomedical applications. Engineering 1(1), 021–026 (2015). https://doi.org/10.15302/J-ENG-2015005

    Article  Google Scholar 

  7. Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862–865 (2005). https://doi.org/10.1038/nature04090

    Article  Google Scholar 

  8. Liu, D., Guo, R., Wang, B., Hu, J., Lu, Y.: Magnetic micro/nanorobots: a new age in biomedicines. Adv. Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200208

    Article  Google Scholar 

  9. Dong, Y., et al.: Magnetic microswarm composed of porous nanocatalysts for targeted elimination of biofilm occlusion. ACS Nano 15, 5056–5067 (2021). https://doi.org/10.1021/acsnano.0c10010

    Article  Google Scholar 

  10. Huang, D., Cai, L., Li, N., Zhao, Y.: Ultrasound‐trigged micro/nanorobots for biomedical applications. Smart Med. (2023). https://doi.org/10.1002/SMMD.20230003

    Article  Google Scholar 

  11. Esteban-Fernández De Ávila, B., et al.: Acoustically Propelled Nanomotors for Intracellular siRNA Delivery. ACS Nano. 10, 4997–5005 (2016). https://doi.org/10.1021/acsnano.6b01415

  12. Liu, F.W., Cho, S.K.: 3-D swimming microdrone powered by acoustic bubbles. Lab Chip 21, 355–364 (2021). https://doi.org/10.1039/d0lc00976h

    Article  Google Scholar 

  13. Palagi, S., et al.: Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647–653 (2016). https://doi.org/10.1038/nmat4569

    Article  Google Scholar 

  14. Yang, W., Wang, X., Wang, Z., Liang, W., Ge, Z.: Light-powered microrobots: recent progress and future challenges. Opt. Lasers Eng. 161, 107380 (2023)

    Article  Google Scholar 

  15. Dong, R., Zhang, Q., Gao, W., Pei, A., Ren, B.: Highly efficient light-driven TiO2-Au Janus Micromotors. ACS Nano 10, 839–844 (2016). https://doi.org/10.1021/acsnano.5b05940

    Article  Google Scholar 

  16. Fusco, S., et al.: Shape-switching microrobots for medical applications: The influence of shape in drug delivery and locomotion. ACS Appl. Mater. Interfaces 7, 6803–6811 (2015). https://doi.org/10.1021/acsami.5b00181

    Article  Google Scholar 

  17. Zhu, C.H., Lu, Y., Peng, J., Chen, J.F., Yu, S.H.: Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 22, 4017–4022 (2012). https://doi.org/10.1002/adfm.201201020

    Article  Google Scholar 

  18. Ussia, M., Urso, M., Kment, S., Fialova, T., Klima, K., Dolezelikova, K., Pumera, M.: Light‐propelled nanorobots for facial titanium implants biofilms removal. Small (2022). https://doi.org/10.1002/smll.202200708

    Article  Google Scholar 

  19. Novotný, F., Wang, H., Pumera, M.: Nanorobots: machines squeezed between molecular motors and micromotors. Chem 6(4), 1032 (2020)

    Article  Google Scholar 

  20. Feng, Y., An, M., Liu, Y., Sarwar, M.T., Yang, H.: Advances in chemically powered micro/nanorobots for biological applications: a review. Adv. Funct. Mater. 33(1), 2209883 (2023)

    Article  Google Scholar 

  21. Celik Cogal, G., Das, P.K., Yurdabak Karaca, G., Bhethanabotla, V.R., Uygun Oksuz, A.: Fluorescence detection of miRNA-21 Using Au/Pt bimetallic tubular micromotors driven by chemical and surface acoustic wave forces. ACS Appl. Bio Mater. 4, 7932–7941 (2021). https://doi.org/10.1021/acsabm.1c00854

    Article  Google Scholar 

  22. Wang, J., et al.: Self‐Propelled PLGA micromotor with chemotactic response to inflammation. Adv. Healthc. Mater. (2020). https://doi.org/10.1002/adhm.201901710

    Article  Google Scholar 

  23. Ma, X., Hortelao, A.C., Miguel-López, A., Sánchez, S.: Bubble-free propulsion of Ultrasmall tubular nanojets powered by biocatalytic reactions. J. Am. Chem. Soc. 138, 13782–13785 (2016). https://doi.org/10.1021/jacs.6b06857

    Article  Google Scholar 

  24. Wang, S., et al.: Hydrogen‐powered microswimmers for precise and active hydrogen therapy towards acute ischemic stroke. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202009475

    Article  Google Scholar 

  25. Shields, C.W.: Biohybrid microrobots for enhancing adoptive cell transfers. Acc. Mater. Res. 4(7), 566–569 (2023). https://doi.org/10.1021/accountsmr.3c00061

    Article  Google Scholar 

  26. Li, J., Dekanovsky, L., Khezri, B., Wu, B., Zhou, H., Sofer, Z.: Biohybrid micro- and nanorobots for intelligent drug delivery. Cyborg. Bionic. Syst. 2022, 9824057 (2022). https://doi.org/10.34133/2022/9824057

    Article  Google Scholar 

  27. Tang, S., et al.: Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 5, eaba6137 (2020)

    Google Scholar 

  28. Wu, Z., et al.: Turning erythrocytes into functional micromotors. ACS Nano 8, 12041–12048 (2014). https://doi.org/10.1021/nn506200x

    Article  Google Scholar 

  29. Xu, H., Medina-Sánchez, M., Magdanz, V., Schwarz, L., Hebenstreit, F., Schmidt, O.G.: Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 12, 327–337 (2018). https://doi.org/10.1021/acsnano.7b06398

    Article  Google Scholar 

  30. Xu, H., Medina-Sánchez, M., Maitz, M.F., Werner, C., Schmidt, O.G.: Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020). https://doi.org/10.1021/acsnano.9b07851

    Article  Google Scholar 

  31. Li, S., et al.: A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018). https://doi.org/10.1038/nbt.4071

    Article  Google Scholar 

  32. Ceren Yasa, I., Ceylan, H., Bozuyuk, U., Wild, A.-M., Sitti, M.: Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, aaz3867 (2020)

    Google Scholar 

  33. Wu, Z., et al.: Cell-membrane-coated synthetic nanomotors for effective biodetoxification. Adv. Funct. Mater. 25, 3881–3887 (2015). https://doi.org/10.1002/adfm.201501050

    Article  Google Scholar 

  34. Xuan, M., Shao, J., Li, J.: Cell membrane-covered nanoparticles as biomaterials. National Sci. Rev. 6, 551–561 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (grant number 2022YFB3304000); the Key Research and Development Projects of Shaanxi Province (grant numbers 2021LLRH08, 2022GXLH-02-15); the Science and Technology Planning Project of Xi’an (grant number 20KYPT0002-1); the Emerging Interdisciplinary Project of Northwestern Polytechnical University (grant number 22GH0306); the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (grant number CX2023052); and the Provincial Special Fund for Science and Technology Development of Shannxi (grant number 2024JC-YBMS-630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanen Wang .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Wang, Y., Liu, M., Liu, Z., Chen, X., Xu, Y. (2025). Actuation Mechanisms and Functions for Medical Micro/Nanorobots. In: Ge, S.S., Luo, Z., Wang, Y., Samani, H., Ji, R., He, H. (eds) Social Robotics. ICSR + BioMed 2024. Lecture Notes in Computer Science(), vol 14916. Springer, Singapore. https://doi.org/10.1007/978-981-97-8963-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8963-4_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8962-7

  • Online ISBN: 978-981-97-8963-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics