Skip to main content

Improving Automatic Post-editing with Error Prompts Extracted from Quality Estimation

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Abstract

This work introduces a simple yet effective approach to integrate Automatic Post-editing (APE) with Word Level Quality Estimation (QE) using an encoder-decoder Transformer architecture, which we term error-prompted APE. The model employs self-detected translation errors by Word Level QE as prompts to refine translations. Specifically, the error-prompted APE model is self-contained: its encoder functions as a quality estimator, detecting errors in the input translation; the decoder then leverages these identified errors as prompts to refine the translation accordingly. This detailed error prompts enable our model to selectively correct errors while preserving the integrity of the rest of the content. We conduct extensive experiments on English-German and English-Chinese datasets from the WMT shared APE task. The results demonstrate that our proposed approach achieves substantial improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/mjpost/sacrebleu.

  2. 2.

    https://www.statmt.org/wmt17/ape-task.html.

References

  1. Behnke, H., Fomicheva, M., Specia, L.: Bias mitigation in machine translation quality estimation. In: Muresan, S., Nakov, P., Villavicencio, A. (eds.) Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 1475–1487. Association for Computational Linguistics, Dublin (2022). https://doi.org/10.18653/v1/2022.acl-long.104

  2. Bhattacharyya, P., Chatterjee, R., Freitag, M., Kanojia, D., Negri, M., Turchi, M.: Findings of the WMT 2023 shared task on automatic post-editing. In: Koehn, P., Haddow, B., Kocmi, T., Monz, C. (eds.) Proceedings of the Eighth Conference on Machine Translation, pp. 672–681. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.wmt-1.55

  3. Bojar, O., et al.: Findings of the 2017 conference on machine translation (WMT17). In: Proceedings of the Second Conference on Machine Translation, pp. 169–214 (2017)

    Google Scholar 

  4. Chatterjee, R., Federmann, C., Negri, M., Turchi, M.: Findings of the WMT 2019 shared task on automatic post-editing. In: Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2), pp. 11–28 (2019)

    Google Scholar 

  5. Chatterjee, R., Negri, M., Turchi, M., Blain, F., Specia, L.: Combining quality estimation and automatic post-editing to enhance machine translation output. In: Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track), pp. 26–38 (2018)

    Google Scholar 

  6. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Jurafsky, D., Chai, J., Schluter, N., Tetreault, J. (eds.) Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 8440–8451. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.acl-main.747

  7. Deoghare, S., Kanojia, D., Blain, F., Ranasinghe, T., Bhattacharyya, P.: Quality estimation-assisted automatic post-editing. In: Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 1686–1698. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.findings-emnlp.115

  8. Farhad, A., et al.: Findings of the 2021 conference on machine translation (wmt21). In: Proceedings of the Sixth Conference on Machine Translation, pp. 1–88. Association for Computational Linguistics (2021)

    Google Scholar 

  9. Fomicheva, M., et al.: Mlqe-pe: a multilingual quality estimation and post-editing dataset. arXiv preprint arXiv:2010.04480 (2020)

  10. Geng, X., et al.: Improved pseudo data for machine translation quality estimation with constrained beam search. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 12434–12447. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.emnlp-main.764

  11. Hokamp, C.: Ensembling factored neural machine translation models for automatic post-editing and quality estimation. In: Proceedings of the Second Conference on Machine Translation, pp. 647–654 (2017)

    Google Scholar 

  12. Johnson, M., et al.: Google’s multilingual neural machine translation system: enabling zero-shot translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)

    Google Scholar 

  13. Kepler, F., Trénous, J., Treviso, M., Vera, M., Martins, A.F.: Openkiwi: an open source framework for quality estimation. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 117–122 (2019)

    Google Scholar 

  14. Kim, H., Jung, H.Y., Kwon, H., Lee, J.H., Na, S.H.: Predictor-estimator: neural quality estimation based on target word prediction for machine translation. ACM Trans. Asian Low-Resource Lang. Inf. Process. 17(1), 1–22 (2017)

    Google Scholar 

  15. Lee, D., Ahn, J., Park, H., Jo, J.: Intellicat: intelligent machine translation post-editing with quality estimation and translation suggestion. arXiv preprint arXiv:2105.12172 (2021)

  16. Martins, A.F., Astudillo, R.F., Hokamp, C., Kepler, F.: Unbabel’s participation in the wmt16 word-level translation quality estimation shared task. In: Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pp. 806–811 (2016)

    Google Scholar 

  17. Martins, A.F., Junczys-Dowmunt, M., Kepler, F.N., Astudillo, R., Hokamp, C., Grundkiewicz, R.: Pushing the limits of translation quality estimation. Trans. Assoc. Comput. Linguist. 5, 205–218 (2017)

    Article  Google Scholar 

  18. Moura, J., Vera, M., van Stigt, D., Kepler, F., Martins, A.F.: IST-unbabel participation in the wmt20 quality estimation shared task. In: Proceedings of the Fifth Conference on Machine Translation, pp. 1029–1036 (2020)

    Google Scholar 

  19. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  20. Ranasinghe, T., Orasan, C., Mitkov, R.: An exploratory analysis of multilingual word-level quality estimation with cross-lingual transformers. arXiv preprint arXiv:2106.00143 (2021)

  21. Ranasinghe, T., Orǎsan, C., Mitkov, R.: Transquest: translation quality estimation with cross-lingual transformers. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5070–5081 (2020)

    Google Scholar 

  22. Raunak, V., Sharaf, A., Wang, Y., Awadalla, H., Menezes, A.: Leveraging GPT-4 for automatic translation post-editing. In: Bouamor, H., Pino, J., Bali, K. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 12009–12024. Association for Computational Linguistics, Singapore (2023). https://doi.org/10.18653/v1/2023.findings-emnlp.804

  23. Rubino, R., Sumita, E.: Intermediate self-supervised learning for machine translation quality estimation. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 4355–4360 (2020)

    Google Scholar 

  24. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers, pp. 223–231 (2006)

    Google Scholar 

  25. Specia, L., et al.: Findings of the WMT 2020 shared task on quality estimation. In: Proceedings of the Fifth Conference on Machine Translation, pp. 743–764. Association for Computational Linguistics (2020). https://aclanthology.org/2020.wmt-1.79

  26. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 3104–3112. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

  27. Touvron, H., et al.: Llama 2: open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023)

  28. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  29. Wang, J., Wang, K., Ge, N., Shi, Y., Zhao, Y., Fan, K.: Computer assisted translation with neural quality estimation and automatic post-editing. arXiv preprint arXiv:2009.09126 (2020)

  30. Yang, Z., Meng, F., Yan, Y., Zhou, J.: Rethinking the word-level quality estimation for machine translation from human judgement. In: Rogers, A., Boyd-Graber, J., Okazaki, N. (eds.) Findings of the Association for Computational Linguistics: ACL 2023, pp. 2012–2025. Association for Computational Linguistics, Toronto (2023). https://doi.org/10.18653/v1/2023.findings-acl.126

  31. Yang, Z., Meng, F., Zhang, Y., Li, E., Zhou, J.: Wets: a benchmark for translation suggestion. arXiv preprint arXiv:2110.05151 (2021)

  32. Zerva, C., et al.: Findings of the WMT 2022 shared task on quality estimation. In: Proceedings of the Seventh Conference on Machine Translation (WMT), pp. 69–99 (2022)

    Google Scholar 

  33. Zhang, D., Yu, J., Verma, P., Ganesan, A., Campbell, S.: Improving machine translation formality control with weakly-labelled data augmentation and post editing strategies. In: Salesky, E., Federico, M., Costa-jussà, M. (eds.) Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022), pp. 351–360. Association for Computational Linguistics, Dublin (in-person and online) (2022). https://doi.org/10.18653/v1/2022.iwslt-1.32

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanliang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, M., Zhang, Y. (2025). Improving Automatic Post-editing with Error Prompts Extracted from Quality Estimation. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15361. Springer, Singapore. https://doi.org/10.1007/978-981-97-9437-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9437-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9436-2

  • Online ISBN: 978-981-97-9437-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics