Skip to main content

Part-of-Speech and Confusion-Set Constrained Language Model for Vietnamese Spelling Correction Corpus Construction

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15362))

  • 195 Accesses

Abstract

Supervised spelling error correction models have achieved outstanding performances on rich-source languages. However, these models are difficult to directly apply to Vietnamese spelling correction due to the corpus scarcity. To address this issue, we first construct a basic high-quality Vietnamese Spelling Correction (ViSC) corpus via automatic speech recognition (ASR) generation and human annotation. Then, we propose a part-of-speech and confusion-set double-constrained method to mimic the practical error distribution and use them as external knowledge to guide the large language models (LLMs) to construct diverse pseudo data. Finally, we exploit pseudo corpora to pre-train and ViSC corpus to fine-tune spelling error correction models. Experiments on the benchmark dataset show that our proposed corpus construction method consistently outperforms various baselines, leading to state-of-the-art results on all Vietnamese-specific pre-trained language model-enhanced spelling correction models. Detailed analysis demonstrates that part-of-speech and confusion-set are complementary and significant in controlling a stable and diverse corpus generation. In-depth comparison experiments reveal that the proper utilization of pseudo corpus is essential for improving Vietnamese spelling error correction. Besides, we release our codes and constructed corpus at https://github.com/DarkFanta3y/VSEC_corpus to facilitate future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vnexpress.net/.

  2. 2.

    https://github.com/undertheseanlp/underthesea.

  3. 3.

    https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct.

  4. 4.

    https://huggingface.co/vinai/bartpho-syllable.

  5. 5.

    https://huggingface.co/vinai/phobert-large.

References

  1. Bryant, C., Felice, M., Andersen, Ø.E., Briscoe, T.: The BEA-2019 shared task on grammatical error correction. In: Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 52–75 (2019)

    Google Scholar 

  2. Bryant, C., Yuan, Z., Qorib, M.R., Cao, H., Ng, H.T., Briscoe, T.: Grammatical error correction: a survey of the state of the art. In: Computational Linguistics, pp. 643–701 (2023)

    Google Scholar 

  3. Choe, Y.J., Ham, J., Park, K., Yoon, Y.: A neural grammatical error correction system built on better pre-training and sequential transfer learning. arXiv preprint arXiv:1907.01256 (2019)

  4. Fan, Y., Jiang, F., Li, P., Li, H.: GrammarGPT: exploring open-source LLMs for native Chinese grammatical error correction with supervised fine-tuning. In: Liu, F., Duan, N., Xu, Q., Hong, Y. (eds.) NLPCC 2023. LNCS, vol. 14304, pp. 69–80. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44699-3_7

    Chapter  Google Scholar 

  5. Fang, T., et al.: Is chatGPT a highly fluent grammatical error correction system? A comprehensive evaluation. CoRR (2023)

    Google Scholar 

  6. Grundkiewicz, R., Junczys-Dowmunt, M., Heafield, K.: Neural grammatical error correction systems with unsupervised pre-training on synthetic data. In: Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 252–263 (2019)

    Google Scholar 

  7. Kaneko, M., Mita, M., Kiyono, S., Suzuki, J., Inui, K.: Encoder-decoder models can benefit from pre-trained masked language models in grammatical error correction. In: Proceedings of ACL, pp. 4248–4254 (2020)

    Google Scholar 

  8. Kantor, Y., et al.: Learning to combine grammatical error corrections. In: Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, BEA@ACL 2019, Florence, Italy, 2 August 2019, pp. 139–148 (2019)

    Google Scholar 

  9. Li, Y., et al.: On the (in)effectiveness of large language models for Chinese text correction. CoRR (2023)

    Google Scholar 

  10. Lichtarge, J., Alberti, C., Kumar, S., Shazeer, N., Parmar, N., Tong, S.: Corpora generation for grammatical error correction. In: Proceedings of AACL, pp. 3291–3301 (2019)

    Google Scholar 

  11. Ma, S., et al.: Linguistic rules-based corpus generation for native Chinese grammatical error correction. In: Proceedings of EMNLP Findings, pp. 576–589 (2022)

    Google Scholar 

  12. Malmi, E., Krause, S., Rothe, S., Mirylenka, D., Severyn, A.: Encode, tag, realize: high-precision text editing. In: Proceedings of EMNLP, pp. 5053–5064 (2019)

    Google Scholar 

  13. Mukherjee, S., Awadallah, A.H.: Uncertainty-aware self-training for text classification with few labels. arXiv preprint arXiv:2006.15315 (2020)

  14. Ng, H.T., Wu, S.M., Briscoe, T., Hadiwinoto, C., Susanto, R.H., Bryant, C.: The CoNLL-2014 shared task on grammatical error correction. In: Proceedings of CoNLL, pp. 1–14 (2014)

    Google Scholar 

  15. Nguyen, D.Q., Nguyen, A.T.: PhoBERT: pre-trained language models for vietnamese. arXiv preprint arXiv:2003.00744 (2020)

  16. Omelianchuk, K., Atrasevych, V., Chernodub, A.N., Skurzhanskyi, O.: Gector - grammatical error correction: tag, not rewrite. In: Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications, BEA@ACL 2020, Online, 10 July 2020, pp. 163–170 (2020)

    Google Scholar 

  17. Pedler, J., Mitton, R.: A large list of confusion sets for spellchecking assessed against a corpus of real-word errors. In: Proceedings of LREC (2010)

    Google Scholar 

  18. Reynolds, L., McDonell, K.: Prompt programming for large language models: Beyond the few-shot paradigm. In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2021)

    Google Scholar 

  19. Stahlberg, F., Kumar, S.: Seq2Edits: sequence transduction using span-level edit operations. In: Proceedings of EMNLP, pp. 5147–5159 (2020)

    Google Scholar 

  20. Tran, N.L., Le, D.M., Nguyen, D.Q.: BARTpho: pre-trained sequence-to-sequence models for Vietnamese. In: Proceedings of Interspeech, pp. 1751–1755 (2022)

    Google Scholar 

  21. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  22. Wang, D., Song, Y., Li, J., Han, J., Zhang, H.: A hybrid approach to automatic corpus generation for Chinese spelling check. In: Proceedings of EMNLP, pp. 2517–2527 (2018)

    Google Scholar 

  23. Wang, Y., Wang, Y., Dang, K., Liu, J., Liu, Z.: A comprehensive survey of grammatical error correction. ACM Trans. Intell. Syst. Technol. (TIST) 12(5), 1–51 (2021)

    Google Scholar 

  24. Yang, Z., Hu, Z., Dyer, C., Xing, E.P., Berg-Kirkpatrick, T.: Unsupervised text style transfer using language models as discriminators. In: Proceedings of NeurIPS, pp. 7298–7309 (2018)

    Google Scholar 

  25. Ye, J., Li, Y., Li, Y., Zheng, H.: MixEdit: revisiting data augmentation and beyond for grammatical error correction. In: Proceedings of EMNLP Findings, pp. 10161–10175 (2023)

    Google Scholar 

  26. Yuan, Z., Briscoe, T.: Grammatical error correction using neural machine translation. In: Proceedings of AACL, pp. 380–386 (2016)

    Google Scholar 

  27. Zhang, Y., Cui, L., Cai, D., Huang, X., Fang, T., Bi, W.: Multi-task instruction tuning of llama for specific scenarios: a preliminary study on writing assistance. arXiv preprint arXiv:2305.13225 (2023)

  28. Zhang, Y., et al.: MuCGEC: a multi-reference multi-source evaluation dataset for Chinese grammatical error correction. In: Proceedings of AACL, pp. 3118–3130 (2022)

    Google Scholar 

  29. Zhang, Y., et al.: NaSGEC: a multi-domain Chinese grammatical error correction dataset from native speaker texts. In: Proceedings of ACL Findings, pp. 9935–9951 (2023)

    Google Scholar 

  30. Zhang, Y., Zhang, B., Li, Z., Bao, Z., Li, C., Zhang, M.: SynGEC: syntax-enhanced grammatical error correction with a tailored GEC-oriented parser. In: Proceedings of EMNLP, pp. 2518–2531 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U21B2027, 62366027, 62266028, 62306129), Yunnan Provincial Major Science and Technology Special Plan Projects (202103AA080015, 202202AD080003, 202203AA080004), Yunnan Fundamental Research Projects (202401BC070021, 202301AS070047, 202401CF070121), Kunming University of Science and Technology’s “Double First-rate” Construction Joint Project (202201BE070001-021, 202301BE070001-027), Yunnan High and New Technology Industry Project (201606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Chen, X., Liu, X., Dong, L., Yu, Z., Mao, C. (2025). Part-of-Speech and Confusion-Set Constrained Language Model for Vietnamese Spelling Correction Corpus Construction. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15362. Springer, Singapore. https://doi.org/10.1007/978-981-97-9440-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9440-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9439-3

  • Online ISBN: 978-981-97-9440-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics