Skip to main content

Hierarchical Policies of Subgoals for Safe Deep Reinforcement Learning

  • Conference paper
  • First Online:
Ubiquitous Security (UbiSec 2022)

Abstract

Reinforcement learning is a machine learning method that relies on the agent to learn by trial and error to solve decision optimization problems. It is well known that an agent based on deep reinforcement learning in complex environments is difficult to train. Moreover, the agent will generate unsafe and strange actions due to the lack of sufficient reward feedback from the environment. To make the agent converge to a better policy and make its behavior safer and more controllable under sparse rewards, we propose a subgoal embedding method based on prior knowledge and hierarchical strategy that can make the training process converge faster. The subgoal embedding method can be combined with existing reinforcement learning methods. In this paper, we combine the subgoal embedding method with REINFORCE algorithm and PPO(Proximal Policy Optimization) algorithm to test the method in the MiniGrid-DoorKey game environment of the gym platform. The experiments demonstrate the effectiveness of the subgoal embedding method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrychowicz, M., et al.: Hindsight experience replay. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  2. Cheng, J., Yu, F., Zhang, H., Dai, Y.: Skill reward for safe deep reinforcement learning. In: Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security. UbiSec 2021. Communications in Computer and Information Science, vol. 1557, pp 203–213. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0468-4_15

  3. Ferreira, E., Avignon, F., Lefevre, F.: On the use of social signal for reward shaping in reinforcement learning for dialogue management. In: SEMDIAL 2013 DialDam, p. 44 (2013)

    Google Scholar 

  4. Horgan, D., et al.: Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933 (2018)

  5. Iosif, A.C., Gasiba, T.E., Zhao, T., Lechner, U., Pinto-Albuquerque, M.: A large-scale study on the security vulnerabilities of cloud deployments. In: Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security, UbiSec 2021. CCIS, vol. 1557, pp 171–188. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0468-4_13

  6. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D., Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397 (2016)

  7. Koay, A.M.Y., Xie, M., Ko, R.K.L., Sterner, C., Choi, T., Dong, N.: Sdgen: A scalable, reproducible and flexible approach to generate real world cyber security datasets. In: Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security. UbiSec 2021. Communications in Computer and Information Science, vol 1557, pp 102–115. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0468-4_8

  8. Lou, P., Xu, K., Jiang, X., Xiao, Z., Yan, J.: Path planning in an unknown environment based on deep reinforcement learning with prior knowledge. J. Intell. Fuzzy Syst. (Preprint), 1–17 (2021)

    Google Scholar 

  9. Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Hadsell, R.: Learning to navigate in complex environments. arXiv (2016)

    Google Scholar 

  10. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  11. Ng, A.Y., Russell, S., et al.: Algorithms for inverse reinforcement learning. In: Icml, vol. 1, p. 2 (2000)

    Google Scholar 

  12. Plappert, M., et al.: Multi-goal reinforcement learning: Challenging robotics environments and request for research. arXiv preprint arXiv:1802.09464 (2018)

  13. Riedmiller, M., et al.: Learning by playing solving sparse reward tasks from scratch. In: International Conference On Machine Learning, pp. 4344–4353. PMLR (2018)

    Google Scholar 

  14. Schaul, T., Horgan, D., Gregor, K., Silver, D.: Universal value function approximators. In: International Conference on Machine Learning, pp. 1312–1320. PMLR (2015)

    Google Scholar 

  15. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  16. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  17. Tang, Y., Zhang, D., Liang, W., Li, K.C., Sukhija, N.: Active malicious accounts detection with multimodal fusion machine learning algorithm. In: Wang, G., Choo, K.K.R., Ko, R.K.L., Xu, Y., Crispo, B. (eds.) Ubiquitous Security. UbiSec 2021. CCIS, vol. 1557, pp 38–52. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-0468-4_4

  18. Tavakoli, A., Pardo, F., Kormushev, P.: Action branching architectures for deep reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  19. Zhao, X., Zhang, L., Xia, L., Ding, Z., Yin, D., Tang, J.: Deep reinforcement learning for list-wise recommendations. arXiv preprint arXiv:1801.00209 (2017)

Download references

Acknowledgments

This work is supported in part by China Postdoctoral Science Foundation under Grant Number 2021M693976, Hunan Provincial Natural Science Foundation under Grant Number 2020JJ5367, Key Project of Teaching Reform in Colleges and Universities of Hunan Province under Grant Number HNJG-2021-0251, and Scientific Research Fund of Hunan Provincial Education Department under Grant Number 21A0599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinglong Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, F., Gao, F., Yuan, Y., Xing, X., Dai, Y. (2023). Hierarchical Policies of Subgoals for Safe Deep Reinforcement Learning. In: Wang, G., Choo, KK.R., Wu, J., Damiani, E. (eds) Ubiquitous Security. UbiSec 2022. Communications in Computer and Information Science, vol 1768. Springer, Singapore. https://doi.org/10.1007/978-981-99-0272-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0272-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0271-2

  • Online ISBN: 978-981-99-0272-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics